QoE Analysis of Media Streaming in Wireless Data Networks

  • Yuedong Xu
  • Eitan Altman
  • Rachid El-Azouzi
  • Salah Eddine Elayoubi
  • Majed Haddad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7290)


The purpose of this paper is to model quality of experience (QoE) of media streaming service in a shared fast-fading channel. In this context, the arrival and the service processes of the playout buffer do not have the same job size. We present an analytical framework based on Takács Ballot theorem to compute the probability of buffer starvation and the distribution of playback intervals. We model the arrival processes of Proportional Fair and Round Robin schedulers, and feed them into this framework to study the impact of prefetching on the starvation behavior. Our simulations match the developed model very well if the base station knows the playback rate and the channel gain. Furthermore, we make an important observation that QoE metrics predicted by users are very sensitive to the measurement error of arrival process.


Media streaming Quality of Experience Starvation Probability Prefetching Delay Ballot Theorem 


  1. 1.
    Takács, L.: Ballot Problems. Probability Theory and Related Fields 1(2), 154–158 (1962)MathSciNetMATHGoogle Scholar
  2. 2.
    Luan, H., Cai, L.X., Shen, X.: Impact of network dynamics on users’ video quality: analytical framework and QoS provision. IEEE Trans. on Multimedia 12(1), 64–78 (2010)CrossRefGoogle Scholar
  3. 3.
    Liang, G., Liang, B.: Effect of delay and buffering on jitter-free streaming over random VBR channels. IEEE Trans. Multimedia 10(6), 1128–1141 (2008)CrossRefGoogle Scholar
  4. 4.
    ParandehGheibi, A., Medard, M., Ozdaglar, A., Shakkottai, S.: Avoiding Interruptions a QoE Reliability Function for Streaming Media Applications. IEEE Journal on Selected Area in Communications 29(5), 1064–1074 (2011)CrossRefGoogle Scholar
  5. 5.
    Xu, Y., Altman, E., Elzouzi, R., Haddad, M., Elayoubi, S., Jimenez, T.: Probabilistic Analysis of Buffer Starvation in Markovian Queues. In: IEEE Infocom (2012)Google Scholar
  6. 6.
    Combes, R., Elayoubi, S., Altman, Z.: Cross-layer analysis of scheduling gains: Application to LMMSE receivers in frequency-selective Rayleigh-fading channels. In: Proc. of ICST WiOpt 2011, pp. 133–139 (2011)Google Scholar
  7. 7.
    Choi, J.G., Bahk, S.: Cell-throughput analysis of the proportional fair scheduler in the single-cell environment. IEEE Trans. Veh. Tech. 56, 766–778 (2007)CrossRefGoogle Scholar
  8. 8.
    Bonald, T., Muscariello, L.: Opportunistic Scheduling of Voice and Data Traffic in Wireless Networks. In: EuroFGI Workshop on IP QoS and Traffic Control (2007)Google Scholar
  9. 9.
    Dobrian, F., Awan, A., Stoica, I., Sekar, V., Ganjam, A., Joseph, D., Zhan, J., Zhang, H.: Understanding the Impact of Video Quality on User Engagement. In: Proc. of ACM Sigcomm 2011, Toronto (2011)Google Scholar
  10. 10.
    Chang, Y.J., Chien, F.T., Kuo, C.C.: Cross-layer QoS Analysis of Opportunistic OFDM-TDMA and OFDMA Networks. IEEE JSAC 25, 657–666 (2007)Google Scholar
  11. 11.
    Donsker, M.D.: Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems. Annals of Mathematical Statistics 23 (1952)Google Scholar
  12. 12.
    Xu, Y.: QoE Analysis of Media Streaming in Wireless Data Networks (2011),

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Yuedong Xu
    • 1
  • Eitan Altman
    • 2
  • Rachid El-Azouzi
    • 1
  • Salah Eddine Elayoubi
    • 3
  • Majed Haddad
    • 1
  1. 1.University of AvignonAvignonFrance
  2. 2.INRIA Sophia AntipolisFrance
  3. 3.Orange LabsIssy-Les-MoulineauxFrance

Personalised recommendations