Quality Adaptation in P2P Video Streaming Based on Objective QoE Metrics

  • Julius Rückert
  • Osama Abboud
  • Thomas Zinner
  • Ralf Steinmetz
  • David Hausheer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7290)


The transmission of video data is a major part of traffic on today’s Internet. Since the Internet is a highly dynamic environment, quality adaptation is essential in matching user device resources with the streamed video quality. This can be achieved by applying mechanisms that follow the Scalable Video Coding (SVC) standard, which enables scalability of the video quality in multiple dimensions. In SVC-based streaming, adaptation decisions have long been driven by Quality of Service (QoS) metrics, such as throughput. However, these metrics do not well match the way human users perceive video quality. Therefore, in this paper, the classical SVC-based video streaming approach is expanded to consider Quality of Experience (QoE) for adaptation decisions. The video quality is assessed using existing objective techniques with a high correlation to the human perception. The approach is evaluated in context of a P2P-based Video-on-Demand (VoD) system and shows that by making peers favor always layers with a high estimated QoE but not necessarily high bandwidth requirements, the performance of the entire system can be enhanced in terms of playback delay and SVC video quality by up to 20%. At the same time, content providers are able to reduce up to 60 of their server costs, compared to the classical QoS-based approach.


Peer-to-Peer Video Streaming Quality Adaptation Quality of Experience Scalable Video Coding 


  1. 1.
    Abboud, O., Rückert, J., Hausheer, D.: QoE-aware Quality Adaptation in Peer-to-Peer Video-on-Demand. Tech. Rep. PS-TR-2012-01, Peer-to-Peer Systems Engineering, TU Darmstadt (2012)Google Scholar
  2. 2.
    Abboud, O., Zinner, T., Pussep, K., Steinmetz, R.: On the Impact of Quality Adaptation in SVC-based P2P Video-on-Demand Systems. In: ACM MMSys (2011)Google Scholar
  3. 3.
    Baccichet, P., Schierl, T., Wiegand, T., Girod, B.: Low-delay Peer-to-Peer Streaming using Scalable Video Coding. In: IEEE PV Workshop (2007)Google Scholar
  4. 4.
    Cisco Systems Inc.: Cisco VNI: Forecast and Methodology, 2010-2015 (2011), (accessed November 12, 2011)
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (eds.): Introduction to Algorithms, 2nd edn. The MIT Press (2001)Google Scholar
  6. 6.
    Cui, Y., Nahrstedt, K.: Layered Peer-to-Peer Streaming. In: ACM NOSSDAV (2003)Google Scholar
  7. 7.
    Video Quality Experts Group: Final Report on the Validation of Objective Models of Video Quality Assessment, FR-TV Phase II (2003), (accessed November 12, 2011)
  8. 8.
    Gustafsson, J., Heikkila, G., Pettersson, M.: Measuring Multimedia Quality in Mobile Networks with an Objective Parametric Model. In: IEEE ICIP (2008)Google Scholar
  9. 9.
    Kaune, S., Tyson, G., Pussep, K., Mauthe, A., Steinmetz, R.: The Seeder Promotion Problem: Measurements, Analysis and Solution Space. In: IEEE ICCCN (2010)Google Scholar
  10. 10.
    Kim, C.S., Sohn, H., Neve, W.D., Ro, Y.M.: An Objective Perceptual Quality-Based ADTE for Adapting Mobile SVC Video Content. IEICE Trans. on Information & Systems E92-D(1), 93–96 (2009)CrossRefGoogle Scholar
  11. 11.
    Lee, J., Simone, F.D., Ebrahimi, T.: Subjective Quality Evaluation via Paired Comparison: Application to Scalable Video Coding. IEEE Trans. on Multimedia 13(5), 882–893 (2011)CrossRefGoogle Scholar
  12. 12.
    Lee, T.C., Liu, P.C., Shyu, W.L., Wu, C.Y.: Live Video Streaming Using P2P and SVC. In: IFIP/IEEE MMNS (2008)Google Scholar
  13. 13.
    Menkovski, V., Exarchakos, G., Liotta, A.: Machine Learning Approach for Quality of Experience Aware Networks. In: IEEE INCoS (2010)Google Scholar
  14. 14.
    Mokhtarian, K., Hefeeda, M.: Analysis of peer-assisted Video-on-Demand Systems with Scalable Video Streams. In: ACM MMSys (2010)Google Scholar
  15. 15.
    Mu, M.: An Interview with Video Quality Experts. ACM SIGMultimedia Records 1(4), 4–13 (2009)CrossRefGoogle Scholar
  16. 16.
    Mushtaq, M., Ahmed, T.: Smooth Video Delivery for SVC based Media Streaming over P2P Networks. In: IEEE CCNC (2008)Google Scholar
  17. 17.
    Ni, P., Eg, R., Eichhorn, A., Griwodz, C., Halvorsen, P.: Flicker Effects in Adaptive Video Streaming to Handheld Devices. ACM Multimedia (2011)Google Scholar
  18. 18.
    Pinson, M., Wolf, S.: A New Standardized Method for Objectively Measuring Video Quality. IEEE Trans. on Broadcasting 50(3), 312–322 (2004)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Schwarz, H., Marpe, D., Wiegand, T.: Overview of the Scalable Video Coding Extension of the H.264/AVC Standard. IEEE TCSVT 17(9), 1103–1120 (2007)Google Scholar
  21. 21.
    Stingl, D., Groß, C., Rückert, J., Nobach, L., Kovacevic, A., Steinmetz, R.: PeerfactSim.KOM: A Simulation Framework for Peer-to-Peer Systems. In: ACM/IEEE/IFIP HPCS (2011)Google Scholar
  22. 22.
    Winkler, S.: Digital Video Quality: Vision Models and Metrics, 1st edn. Wiley (2005)Google Scholar
  23. 23.
    Wolf, S., Pinson, M.: Application of the NTIA General Video Quality Metric (VQM) to HDTV Quality Monitoring. In: VPQM (2007)Google Scholar
  24. 24.
    Zhai, G., Cai, J., Lin, W., Yang, X., Zhang, W.: Three Dimensional Scalable Video Adaptation via User-End Perceptual Quality Assessment. IEEE Trans. on Broadcasting 54(3), 719–727 (2008)CrossRefGoogle Scholar
  25. 25.
    Zink, M., Künzel, O., Schmitt, J., Steinmetz, R.: Subjective Impression of Variations in Layer Encoded Videos. In: IEEE IWQoS (2003)Google Scholar
  26. 26.
    Zinner, T., Hohlfeld, O., Abboud, O., Hoßfeld, T.: Impact of Frame Rate and Resolution on Objective QoE Metrics. In: IEEE QoMEX Workshop (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Julius Rückert
    • 1
  • Osama Abboud
    • 2
  • Thomas Zinner
    • 3
  • Ralf Steinmetz
    • 2
  • David Hausheer
    • 1
  1. 1.P2P Systems EngineeringTU DarmstadtGermany
  2. 2.Multimedia Communications LabTU DarmstadtGermany
  3. 3.Communication NetworksUniversity of WuerzburgGermany

Personalised recommendations