Validity of Router Responses for IP Aliases Resolution

  • Santiago Garcia-Jimenez
  • Eduardo Magaña
  • Mikel Izal
  • Daniel Morató
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7289)

Abstract

In order to obtain close-to-reality Internet maps, IP aliases resolution allows identifying IP addresses belonging to the same router. Mainly, active probing is used for IP aliases resolution following direct and indirect schemes. Also, different types of probe packets are used (ICMP, UDP, etc.) focusing on different header fields and characteristics of IP and higher layers. Responsiveness of routers is different not only in the number of response packets received, but also in the validity of those packets to be used in IP aliases identification. Therefore, specific behavior of routers generating those response packets can decide the success or failure of specific IP aliases resolution methods. In this paper, an in-depth analysis of router behaviors is provided considering not only router responsiveness, but also the validity of those responses to be used in IP aliases resolution. Our results show that although responsiveness is better for indirect probing, direct probing with ICMP Echo probe packets and IPID-based behavior provide the best identification ratio for IP aliases resolution.

Keywords

IP aliases resolution router responsiveness active probing direct and indirect probing 

References

  1. 1.
    CAIDA. ARK, Archipelago Measurement Infrastructure (2002), http://www.caida.org/projects/ark/
  2. 2.
    Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy, A., Venkataramani, A.: iPlane: An information Plane for Distributed Services. In: 7th USENIX Symposium on Operating Systems Desing and Implementation, Seattle, WA, pp. 367–380 (November 2006)Google Scholar
  3. 3.
    McRobb, D., Claffy, K., Monk, T.: Skitter: CAIDA’s macroscopic Internet topology discovery and tracking tool (1999), http://www.caida.org/tools/measurement/skitter/
  4. 4.
    Shavitt, Y., Shir, E.: DIMES: Let the Internet Measure Itself. ACM SIGCOMM Computer Communication Review 35(5), 71–74 (2005)CrossRefGoogle Scholar
  5. 5.
    Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocketfuel. In: Proc. ACM SIGCOMM, Pittsburgh, pp. 133–145 (August 2002)Google Scholar
  6. 6.
    Keys, K., Hyun, Y., Luckie, M., Claffy, K.: Internet-Scale IPv4 Alias Resolution with MIDAR: System Architecture. Technical report, Cooperative Association for Internet Data Analysis (CAIDA) (May 2011)Google Scholar
  7. 7.
    Gunes, M.H., Sarac, K.: Analyzing Router Responsiveness to Active Measurement Probes. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448, pp. 23–32. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Keys, K.: Internet-Scale IP Alias Resolution Techniques. ACM SIGCOMM Computer Communication Review (CCR) 40(1), 50–55 (2010)Google Scholar
  9. 9.
    Gunes, M.H., Sarac, K.: Resolving IP aliases in building traceroute-based Internet maps. IEEE/ACM Transactions on Networking 17, 1738–1751 (2009)CrossRefGoogle Scholar
  10. 10.
    Sherry, J., Katz-Bassett, E., Pimenova, M., Madhyastha, H.V., Anderson, T., Krishnamurthy, A.: Resolving ip aliases with prespecified timestamps. In: Proceedings of the 10th Annual Conference on Internet Measurement, IMC 2010, pp. 172–178. ACM, New York (2010)CrossRefGoogle Scholar
  11. 11.
    Govindan, R., Tangmunarunkit, H.: Heuristics for internet map discovery. In: Proc. IEEE INFOCOM (March 2000)Google Scholar
  12. 12.
    Kamil Sarac, Engin Tozal, M.: Tracenet: An internet topology data collector. In: Internet Measurement Conference IMC, pp. 356–368 (November 2010)Google Scholar
  13. 13.
    Kamil Sarac, Engin Tozal, M.: Palmtree: An ip alias resolution algorithm with linear probing complexity. Computer Communications 34(5), 658–669 (2011)CrossRefGoogle Scholar
  14. 14.
    Garcia-Jimenez, S., Magaña, E., Morató, D., Izal, M.: On the performance and improvement of alias resolution methods for Internet core networks. Annals of Telecommunications 66, 31–43 (2011)CrossRefGoogle Scholar
  15. 15.
    Bender, A., Sherwood, R., Spring, N.: Fixing Ally’s Growing Pains with Velocity Modeling. In (IMC 2008) 8th ACM SIGCOMM Conference on Internet Measurement, pp. 337–342. ACM, New York (2008)CrossRefGoogle Scholar
  16. 16.
    Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.: Planetlab: An overlay testbed for broad-coverage services. ACM SIGCOMM Computer Communications Review 33, 3–12 (2003)CrossRefGoogle Scholar
  17. 17.
    Augustin, B., Cuvellier, X., Orgogozo, B., Viget, F., Timur Friedman, M.L., Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with paris traceroute. In: 6th ACM SIGCOMM, Rio de Janeiro, Brazil, pp. 153–158 (October 2006)Google Scholar
  18. 18.
  19. 19.
    Canet4 looking glass web tool, http://dooka.canet4.net/lg/lg.php
  20. 20.
    Globalnoc looking glass tool, http://routerproxy.grnoc.iu.edu/
  21. 21.
    Garcia-Jimenez, S., et al.: Tools and data sets used in this paper, http://www.tlm.unavarra.es/~santi/research/paper11.html

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Santiago Garcia-Jimenez
    • 1
  • Eduardo Magaña
    • 1
  • Mikel Izal
    • 1
  • Daniel Morató
    • 1
  1. 1.Public University of NavarrePamplonaSpain

Personalised recommendations