Efficient and Secure Decentralized Network Size Estimation

  • Nathan Evans
  • Bartlomiej Polot
  • Christian Grothoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7289)

Abstract

The size of a Peer-to-Peer (P2P) network is an important parameter for performance tuning of P2P routing algorithms. This paper introduces and evaluates a new efficient method for participants in an unstructured P2P network to establish the size of the overall network. The presented method is highly efficient, propagating information about the current size of the network to all participants using O(|E|) operations where |E| is the number of edges in the network. Afterwards, all nodes have the same network size estimate, which can be made arbitrarily accurate by averaging results from multiple rounds of the protocol. Security measures are included which make it prohibitively expensive for a typical active participating adversary to significantly manipulate the estimates. This paper includes experimental results that demonstrate the viability, efficiency and accuracy of the protocol.

Keywords

Peer-to-Peer protocol design network security 

References

  1. 1.
    Bustos-Jimenez, J., Bersano, N., Schaeffer, S.E., Piquer, J.M., Iosup, A., Ciuffoletti, A.: Estimating the size of peer-to-peer networks using lambert’s w function. In: Gorlatch, S., Fragopoulou, P., Priol, T. (eds.) Grid Computing, pp. 61–72. Springer, US (2008)CrossRefGoogle Scholar
  2. 2.
    Douceur, J.R.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Erdős, P., Rényi, A.: On random graphs. I. Publ. Math. Debrecen 6, 290–297 (1959)MathSciNetGoogle Scholar
  4. 4.
    Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec, A.-M.: Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. 21, 341–374 (2003)CrossRefGoogle Scholar
  5. 5.
    Evans, N., Grothoff, C.: Beyond simulation: Large-scale distributed emulation of p2p protocols. In: 4th Workshop on Cyber Security Experimentation and Test (CSET 2011). USENIX Association (2011)Google Scholar
  6. 6.
    Evans, N., Grothoff, C.: R5n: Randomized recursive routing for restricted-route networks. In: 5th International Conference on Network and System Security. IEEE, Milan (2011)Google Scholar
  7. 7.
    Evans, N., Grothoff, C., Polot, B.: Efficient and secure decentralized network size estimation. Technical report, Technische Universität München (2011)Google Scholar
  8. 8.
    Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23, 219–252 (2005)CrossRefGoogle Scholar
  9. 9.
    Kernighan, B.W., Lin, S.: An Efficient Heuristic Procedure for Partitioning Graphs. The Bell System Technical Journal 49(1), 291–307 (1970)MATHGoogle Scholar
  10. 10.
    Kleinberg, J., Sandler, M., Slivkins, A.: Network failure detection and graph connectivity. SIAM J. Comput. 38, 1330–1346 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kostoulas, D., Psaltoulis, D., Gupta, I., Birman, K., Demers, A.: Decentralized schemes for size estimation in large and dynamic groups. In: Proceedings of the Fourth IEEE International Symposium on Network Computing and Applications, pp. 41–48. IEEE Computer Society, Washington, DC (2005)CrossRefGoogle Scholar
  12. 12.
    Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of the butterfly. In: PODC 2002: Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing, pp. 183–192. ACM, New York (2002)CrossRefGoogle Scholar
  13. 13.
    Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351, 394–406 (2006)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Massoulié, L., Le Merrer, E., Kermarrec, A.-M., Ganesh, A.: Peer counting and sampling in overlay networks: random walk methods. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, pp. 123–132. ACM, New York (2006)CrossRefGoogle Scholar
  15. 15.
    Maymounkov, P., Mazières, D.: Kademlia: A Peer-to-Peer Information System Based on the XOR Metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Le Merrer, E., Kermarrec, A.-M., Massouli, L.: Peer to peer size estimation in large and dynamic networks: A comparative study. In: 15th IEEE International Symposium on High Performance Distributed Computing 2006, pp. 7–17 (2006)Google Scholar
  17. 17.
    Polot, B.: Adapting blackhat approaches to increase the resilience of whitehat application scenarios. Master’s thesis, Technische Universität München (2010)Google Scholar
  18. 18.
    Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Serjantov, A., Lewis, S.: Puzzles in p2p systems. In: 8th CaberNet Radicals Workshop, Corsica (2003)Google Scholar
  20. 20.
    Shafaat, T.M., Ghodsi, A., Haridi, S.: A Practical Approach to Network Size Estimation for Structured Overlays. In: Hummel, K.A., Sterbenz, J.P.G. (eds.) IWSOS 2008. LNCS, vol. 5343, pp. 71–83. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Nathan Evans
    • 1
  • Bartlomiej Polot
    • 2
  • Christian Grothoff
    • 2
  1. 1.Symantec Research LabsTechnische Universität MünchenGermany
  2. 2.Free Secure Network Systems Group, Network Architectures and ServicesTechnische Universität MünchenGermany

Personalised recommendations