Sparsity without the Complexity: Loss Localisation Using Tree Measurements

  • Vijay Arya
  • Darryl Veitch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7289)

Abstract

We study network loss tomography based on observing average loss rates over a set of paths forming a tree – a severely underdetermined linear problem for the unknown link loss probabilities. We examine in detail the role of sparsity as a regularising principle, pointing out that the problem is technically distinct from others in the compressed sensing literature. While sparsity has been applied in the context of tomography, key questions regarding uniqueness and recovery remain unanswered. Our work exploits the tree structure of path measurements to derive sufficient conditions for sparse solutions to be unique and the condition that ℓ1 minimization recovers the true underlying solution. We present a fast single-pass linear algorithm for ℓ1 minimization and prove that a minimum ℓ1 solution is both unique and sparsest for tree topologies. By considering the placement of lossy links within trees, we show that sparse solutions remain unique more often than is commonly supposed. We prove similar results for a noisy version of the problem.

Keywords

network monitoring network tomography loss inference tree topology sparsity 1 regularization compressed sensing 

References

  1. 1.
    Padmanabhan, V.N., Qiu, L., Wang, H.J.: Server-based inference of internet link lossiness. In: IEEE INFOCOM, pp. 145–155 (March 2003)Google Scholar
  2. 2.
    Candes, E., Tao, T.: Decoding by linear programming. IEEE Transactions on Information Theory 51(12), 4203–4215 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Candés, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)MATHCrossRefGoogle Scholar
  4. 4.
    Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM Journal on Computing 24(2), 227–234 (1995)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Arya, V., Veitch, D.: Sparsity without the complexity: Loss localisation using tree measurements. CoRR abs/1108.1377 (2011), http://arxiv.org/abs/1108.1377
  6. 6.
    Duffield, N.G.: Network tomography of binary network performance characteristics. IEEE Transactions on Information Theory 52(12), 5373–5388 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, Y., Bindel, D., Song, H.H., Katz, R.H.: An algebraic approach to practical and scalable overlay network monitoring. In: ACM SIGCOMM, pp. 55–66 (August 2004)Google Scholar
  8. 8.
    Chua, D., Kolaczyk, E., Crovella, M.: Network Krigging. IEEE Journal on Selected Areas in Communications 24(12), 2263–2272 (2006)CrossRefGoogle Scholar
  9. 9.
    Song, H.H., Qiu, L., Zhang, Y.: Netquest: a flexible framework for large-scale network measurement. IEEE/ACM Trans. Netw. 17(1), 106–119 (2009)CrossRefGoogle Scholar
  10. 10.
    Ghita, D., Nguyen, H., Kurant, M., Argyraki, K., Thiran, P.: Netscope: practical network loss tomography. In: IEEE INFOCOM, pp. 1262–1270 (March 2010)Google Scholar
  11. 11.
    Adams, A., Bu, T., Caceres, T., Duffield, N.G., Friedman, T., Horowitz, J., Lo Presti, F., Moon, S.B., Paxson, V., Towsley, D.: The use of End-to-end Multicast Measurements for Characterising Internal Network Behavior. IEEE Communications Magazine 38(5), 152–158 (2000)CrossRefGoogle Scholar
  12. 12.
    Donoho, D.L.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev 43(1), 129–159 (2001)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Firooz, M.H., Roy, S.: Network tomography via compressed sensing. In: IEEE GLOBECOM, pp. 1–5 (December 2010)Google Scholar
  15. 15.
    Indyk, P.: Sparse Recovery Using Sparse Random Matrices. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 157–157. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Xu, W., Mallada, E., Tang, A.: Compressive sensing over graphs. In: IEEE INFOCOM, pp. 2087–2095 (March 2011)Google Scholar
  17. 17.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B Methodological 58, 267–288 (1996)MathSciNetMATHGoogle Scholar
  18. 18.
    Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring ISP topologies with Rocketfuel. IEEE/ACM Trans. Netw. 12(1), 2–16 (2004)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Vijay Arya
    • 1
  • Darryl Veitch
    • 2
  1. 1.IBM–ResearchBangaloreIndia
  2. 2.Dept. of EEEThe University of MelbourneAustralia

Personalised recommendations