Advertisement

Dynamic Scaling of Call-Stateful SIP Services in the Cloud

  • Nico Janssens
  • Xueli An
  • Koen Daenen
  • Claudio Forlivesi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7289)

Abstract

Many cloud technologies available today support dynamically scaling out and back computing services. The predominantly session-oriented nature and the carrier-grade requirements of telco services (such as SIP services) complicate the successful adoption of dynamic scaling in a telco cloud. This paper investigates how to enable dynamic scaling of these telco services in an effective manner, focusing in particular on call-stateful SIP services. First, we present and evaluate two protocols to transparently migrate ongoing sessions between call-stateful SIP servers. These allow to quickly shutdown call-stateful SIP servers in response to a scale back request, removing the need to wait until their ongoing calls have finished. Second, instead of responding to load changes in a reactive manner, this paper explores the potential value of pro-active resource provisioning based on call load forecasting. We propose a self-adaptive Kalman filter to implement short-term call load predictions and combine this with history-based predictions to anticipate future call load changes. We believe that session migration and call load forecasting are two important elements to safely reduce the operational expenditure (OpEx) of a cloudified SIP service.

Keywords

cloud telecommunication elasticity dynamic scaling session migration load prediction SIP 

References

  1. 1.
    Brown, L., Gans, N., Mandelbaum, A., Sakov, A.: Statistical analysis of a telephone call center: a queueing science perspective. Journal of the American Statistical Association (2005)Google Scholar
  2. 2.
    Chen, M.X., Wang, F.J.: Session mobility of sip over multiple devices. In: Proceedings of the 4th International Conference on Testbeds and Research Infrastructures for the Development of Networks & Communities, TridentCom 2008, pp. 23:1–23:9 (2008)Google Scholar
  3. 3.
    Dutta, A., Makaya, C., Das, S., Chee, D., Lin, J., Komorita, S., Chiba, T., Yokot, H., Schulzrinne, H.: Self organizing IP multimedia subsystem. In: Proc. of the 3rd IEEE Int. Conf. on Internet Multimedia Services Architecture and Applications, IMSAA 2009, pp. 118–123 (2009)Google Scholar
  4. 4.
    Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures. Ph.D. thesis, University of California, Irvine (2000)Google Scholar
  5. 5.
    Guha, S., Daswani, N., Jain, R.: An experimental study of the skype Peer-to-Peer VoIP system. In: 5th International Workshop on Peer-to-Peer Systems. Microsoft Research (2006)Google Scholar
  6. 6.
    Hilt, V., Widjaja, I.: Controlling overload in networks of SIP servers. In: IEEE International Conference on Network Protocols, ICNP 2008, pp. 83–93 (October 2008)Google Scholar
  7. 7.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME, Journal of Basic Engineering, 35–45 (1960)Google Scholar
  8. 8.
    Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and performance management of virtualized computing environments via lookahead control. In: Proceedings of the 2008 International Conference on Autonomic Computing, ICAC 2008, pp. 3–12 (2008)Google Scholar
  9. 9.
    Li, J., Moore, A.: Forecasting web page views: methods and observations. Journal of Machine Learning Research 9, 2217–2250 (2008)MATHGoogle Scholar
  10. 10.
    Lim, H.C., Babu, S., Chase, J.S., Parekh, S.S.: Automated control in cloud computing: challenges and opportunities. In: Proceedings of the 1st Workshop on Automated Control for Datacenters and Clouds, ACDC 2009, pp. 13–18 (2009)Google Scholar
  11. 11.
    Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Dynamic right-sizing for power-proportional data centers. In: Proceedings IEEE INFOCOM 2011, pp. 1098–1106 (2011)Google Scholar
  12. 12.
    Mao, M., Li, J., Humphrey, M.: Cloud auto-scaling with deadline and budget constraints. In: 11th IEEE/ACM International Conference on Grid Computing, Grid 2010 (2010)Google Scholar
  13. 13.
    Moazami-Goudarzi, K., Kramer, J.: Maintaining node consistency in the face of dynamic change. In: Proceedings of ICCDS 1996, pp. 62–69 (1996)Google Scholar
  14. 14.
    Padala, P., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Salem, K.: Adaptive control of virtualized resources in utility computing environments. SIGOPS Oper. Syst. Rev. 41, 289–302 (2007)CrossRefGoogle Scholar
  15. 15.
    Perkins, C.: RFC 5944:IP Mobility Support for IPv4, Revised (2010)Google Scholar
  16. 16.
    Rosenberg, J., Schulzrinne, H.: RFC 3262:Reliability of Provisional Responses in Session Initiation Protocol, SIP (2002)Google Scholar
  17. 17.
    Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., Schooler, E.: RFC 3261: SIP: Session Initiation Protocol (2002)Google Scholar
  18. 18.
    Seung, Y., Lam, T., Li, L.E., Woo, T.: Cloudflex: Seamless scaling of enterprise applications into the cloud. In: Proceedings IEEE INFOCOM 2011, pp. 211–215 (April 2011)Google Scholar
  19. 19.
    Trudnowski, D.J., McReynolds, W.L., Johnson, J.M.: Real-time very short-term load prediction for power-system automatic generation control. IEEE Tran. Control Systems Technology 9(2), 254–260 (2001)CrossRefGoogle Scholar
  20. 20.
    Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-tier internet applications. In: Proceedings of ICAC 2005, pp. 217–228 (June 2005)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Nico Janssens
    • 1
  • Xueli An
    • 1
  • Koen Daenen
    • 1
  • Claudio Forlivesi
    • 1
  1. 1.Service Infrastructure Research Dept.Alcatel-Lucent Bell LabsAntwerpBelgium

Personalised recommendations