Advertisement

Model Equations for Flexible Structures with Piezoelectric Actuation

  • Thomas Meurer
Part of the Communications and Control Engineering book series (CCE)

Abstract

Smart material systems, where active distributed actuators and sensors are bonded or embedded in an elastic structure, occur in a large variety of applications with the purpose of vibration suppression, static or dynamic shape control, or fault detection [2, 11, 18]. Moreover, due to the vast progress in actuator development new application areas emerge such as adaptive optics in telescopes, adaptive wings, or so–called smart skins [24]. Here, it is desired to realize a transiently varying shape of a structure to achieve, e.g., the modulation of optical wave fronts, the reduction of drag, or the improvement of aeroelastic characteristics. Thereby, piezoelectric elements typically serve as actuators by exploiting the indirect piezoelectric effect, which allows to convert electrical voltage into mechanical strain. Due to their spatial extension, the modeling of these systems leads to a distributed–parameter description in terms of partial differential equations.

Keywords

Piezoelectric Material Piezoelectric Actuation Flexible Structure Vibration Suppression Composite Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alt, H.: Lineare Funktionalanalysis, 4th edn. Springer, New York (2000)Google Scholar
  2. 2.
    Banks, H., Smith, R., Wang, Y.: Smart Material Structures: Modeling, Estimation and Control. John Wiley & Sons, Chichester (1996)zbMATHGoogle Scholar
  3. 3.
    Haupt, P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  4. 4.
    Lagnese, J., Lions, J.L.: Modelling analysis and control of thin plates. Collection recherches en mathématiques appliquées. Masson, Paris (1989)Google Scholar
  5. 5.
    Macchelli, A., Melchiorri, C.: A formal method for improving the transient behaviour of a non–linear flexible link. Math. Comp. Model Dyn. Sys (MCMDS) 17(1), 3–18 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Dover Publications Inc., Mineola (1994)Google Scholar
  7. 7.
    Meirovitch, L.: Principles and Techniques of Vibrations. Prentice Hall, New Jersey (1997)Google Scholar
  8. 8.
    Meurer, T., Kugi, A.: Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator. Int. J. Robust Nonlin. 21(5), 542–562 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Meurer, T., Thull, D., Kugi, A.: Flatness–based tracking control of a piezoactuated Euler–Bernoulli beam with non–collocated output feedback: theory and experiments. Int. J. Contr. 81(3), 475–493 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nowacki, W.: Dynamic Problems of Thermoelasticity. Noordhoff Int. Publ., PWN–Polish Scientific Publ., Warszawa (1975)Google Scholar
  11. 11.
    Preumont, A.: Vibration Control of Active Structures, 2nd edn. Kluwer Academic, Dordrecht (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Reddy, J.: Energy and Variational Methods in Applied Mechanics. Wiley–Interscience, New York (1984)zbMATHGoogle Scholar
  13. 13.
    Schröck, J.: Mathematical Modeling and Tracking Control of Piezo–actuated Flexible Structures. PhD thesis, Automation and Control Institute, Vienna University of Technology (2011)Google Scholar
  14. 14.
    Schröck, J., Meurer, T., Kugi, A.: Control of a flexible beam actuated by macro-fiber composite patches – Part I: Modelling and feedforward trajectory control. Smart Mater. Struct. 20(1), article 015015, 7 pages (2011)Google Scholar
  15. 15.
    Schröck, J., Meurer, T., Kugi, A.: Control of a flexible beam actuated by macro-fiber composite patches – Part II: Hysteresis and creep compensation, experimental results. Smart Mater. Struct. 20(1), article 015016, 11 pages (2011)Google Scholar
  16. 16.
    Schröck, J., Meurer, T., Kugi, A.: Non–collocated Feedback Stabilization of a Non–Uniform Euler–Bernoulli Beam with In–Domain Actuation. In: Proc. IEEE Conference on Decision and Control (CDC), Orlando (FL), USA, pp. 2776–2781 (2011)Google Scholar
  17. 17.
    Slaughter, W.: The Linearized Theory of Elasticity. Birkhäuser, Basel (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Smith, R.: Smart Material Systems: Model Development. SIAM, Philadelphia (2005)zbMATHCrossRefGoogle Scholar
  19. 19.
    Spong, M., Vidyasagar, M.: Robot Dynamics and Control. John Wiley & Sons, New York (1989)Google Scholar
  20. 20.
    Wilkie, W., Bryant, R., High, J., Fox, R., Hellbaum, R., Jalink, A., Little, B., Mirick, P.: Low–Cost Piezocomposite Actuator for Structural Control Applicationd. In: Smart Structures and Materials 2000: Industrial and Commercial Applications of Smart Structures Technologies, SPIE, Newport Beach (CA), USA, vol. 3991, pp. 323–334 (2000)Google Scholar
  21. 21.
    Williams, R., Park, G., Inman, D., Wilkie, W.: An overview of composite actuators with piezoceramic fibers. In: Proc. 20th Modal Analysis Conference, Los Angeles (CA), USA (2002)Google Scholar
  22. 22.
    Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  23. 23.
    Yourgrau, W., Mandelstam, S.: Variational Principles in Dynamics and Quantum Theory, 3rd edn. Dover Publications Inc., Mineola (2007)Google Scholar
  24. 24.
    Yousefi-Koma, A., Zimcik, D.: Applications of Smart Structures to Aircraft for Performance Enhancement. Canadian Aeronautics and Space Journal 49(4), 163–173 (2003)CrossRefGoogle Scholar
  25. 25.
    Zimmert, N., Pertsch, A., Sawodny, O.: 2–DOF Control of a Fire–Rescue Turntable Ladder. IEEE Trans. Control Sys. Tech. 20(2), 438–452 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Automation and Control Institute / E376Vienna University of TechnologyViennaAustria

Personalised recommendations