Advertisement

Abstract

Although exhibiting a long history and tradition, partial differential equations (PDEs) are just nowadays starting to evolve as the fundamental mathematical description of many technical processes. It can be thereby observed that the success story of PDEs entering new areas of applied research is related to the vast progress in information technology and (computational) mathematics, which provide access to an almost unlimited computational power and newly developed efficient algorithms. With this, the attention is focused on previously unthought problems such as high resolution climate simulation using increasingly finer spatial grids covering the earth’s surface or the study of multi–phase compressible reactive flows in complex geometrical domains.

Keywords

Proper Orthogonal Decomposition Tracking Control Trajectory Planning Feedforward Control Pressure Swing Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkinson, B.: Biochemical Reactors. Pion Limited (1974)Google Scholar
  2. 2.
    Baehr, H., Stephan, K.: Heat and Mass Transfer, 2nd edn. Springer, Berlin (2006)CrossRefGoogle Scholar
  3. 3.
    Bird, R., Stewart, W., Lightfoot, E.: Transport Phenomena. John Wiley & Sons, Inc., New York (2002)Google Scholar
  4. 4.
    Bitzer, M.: Model-based Nonlinear Tracking Control of Pressure Swing Adsorption Plants. In: Meurer, T. (ed.) Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems. LNCIS, vol. 322, pp. 403–418. Springer, Berlin (2005)CrossRefGoogle Scholar
  5. 5.
    Bitzer, M., Zeitz, M.: Design of a nonlinear distributed parameter observer for a pressure swing adsorption plant. Journal of Process Control 12(4), 533–543 (2002)CrossRefGoogle Scholar
  6. 6.
    Cochran, J., Krstic, M.: Motion planning and trajectory tracking for three–dimensional Poiseuille flow. J. Fluid. Mech. 626, 307–332 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
  8. 8.
    Jadachowski, L., Meurer, T., Kugi, A.: State estimation for parabolic PDEs with varying parameters on 3–dimensional spatial domains. In: Proc. 18th IFAC World Congress, Milan, vol. (I), pp. 13,338–13,343 (2011)Google Scholar
  9. 9.
    Ladyženskaja, O., Solonnikov, V., Ural’ceva, N.: Linear and Quasi–linear Equations of Parabolic Type, Translations of Mathematical Monographs, 5th edn., vol. 23. American Mathematical Society, Providence (1998)Google Scholar
  10. 10.
    Meurer, T., Kugi, A.: Tracking control for a diffusion–convection–reaction system: combining flatness and backstepping. In: Proc. 7th IFAC Symposium Nonlinear Control Systems (NOLCOS 2007), Pretoria (SA), pp. 583–588 (2007)Google Scholar
  11. 11.
    Vazquez, R., Krstic, M.: Control of Turbulent and Magnetohydrodynamic Channel Flow. Birkhäuser, Boston (2008)Google Scholar
  12. 12.
    Vazquez, R., Schuster, E., Krstic, M.: Magnetohydrodynamic state estimation with boundary sensors. Automatica 44(10), 2517–2527 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Wouwer, A.V., Zeitz, M.: Parameter estimation in distributed parameter systems. In: Unbehauen, H. (ed.) Encyclopedia of Life Support Systems (EOLSS), chap. Control Systems, Robotics and Automation, article No. 6.43.19.3, EOLSS Publishers, Oxford, UK (2001)Google Scholar
  14. 14.
    Zeitz, M.: Nichtlineare Beobachter für chemische Reaktoren. Fortschr.–Ber. VDI Reihe 8 Nr. 27, VDI Verlag, Düsseldorf (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Automation and Control Institute / E376Vienna University of TechnologyViennaAustria

Personalised recommendations