Skip to main content

A Stackelberg Location on a Network with Fuzzy Random Demand Quantities Using Possibility Measure

  • Conference paper
Intelligent Decision Technologies

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 15))

Abstract

This paper focuses on a competitive facility location problem between leader and follower on a network with demands whose weights are given uncertainly and vaguely. By representing them as fuzzy random variables, the optimal location problem can be formulated as a fuzzy random programming problem for finding Stackelberg equilibrium. For solving the problem, it is reformulated as the problem to find the optimal solutions maximizing a degree of possibility under some chance constraint for the leader. Theorems for its complexity are shown based upon the characteristics of the facility location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammar, E.E.: On fuzzy random multiobjective quadratic programming. European Journal of Operational Research 193, 329–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berman, O., Krass, K.: Facility location with stochastic demands and congestion. In: Drezner, Z., Hamacher, H.W. (eds.) Facility Location: Application and Theory, pp. 329–372. Springer, Berlin (2001)

    Google Scholar 

  3. Drezner, Z.: Competitive location strategies for two facilities. Regional Science and Urban Economics 12, 485–493 (1982)

    Article  Google Scholar 

  4. Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. Journal Systems Science. 9, 613–626 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hakimi, S.L.: On locating new facilities in a competitive environment. European Journal of Operational Research 12, 29–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hakimi, S.L.: Locations with spatial interactions: Competitive locations and games. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete Location Theory. Discrete Mathematics and Optimization, pp. 439–478. Wiley Interscience (1990)

    Google Scholar 

  7. Hotelling, H.: Stability in competition. The Economic Journal 30, 41–57 (1929)

    Article  Google Scholar 

  8. Katagiri, H., Sakawa, M., Hiroaki, I.: Fuzzy random bottleneck spanning tree problems using possibility and necessity measures. European Journal of Operational Research 152, 88–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Katagiri, H., Sakawa, M., Kato, K., Nishizaki, I.: A fuzzy random multiobjective 0-1 programming based on the expectation optimization model using possibility and necessity measures. Mathematical and Computer Modelling 40, 411–421 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Katagiri, H., Sakawa, M., Kato, K., Nishizaki, I.: Interactive multiobjective fuzzy random linear programming: Maximization of possibility and probability. European Journal of Operational Research 188, 530–539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kruse, R., Meyer, K.D.: Statistics with vague data. D. Riedel Publishing Company, Dordrecht (1987)

    Book  MATH  Google Scholar 

  12. Kwakernaak, H.: Fuzzy random variables-I. definitions and theorems. Information Sciences 15, 1–29 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miller, T.C., Friesz, T.L., Tobin, R.L.: Equilibrium facility location on networks. Springer, Berlin (1996)

    MATH  Google Scholar 

  14. Moreno Pérez, J.A., Marcos Moreno Vega, L., Verdegay, J.L.: Fuzzy location problems on networks. Fuzzy Sets and Systems 142, 393–405 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Plastria, F., Vanhaverbeke, L.: Discrete models for competitive location with foresight. Computers & Operations Research 35, 683–700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qiao, Z., Wang, G.: On solutions and distribution problems of the linear programming with fuzzy random variable coefficients. Fuzzy Sets and Systems 58, 120–155 (1993)

    MathSciNet  Google Scholar 

  17. Shiode, S., Drezner, Z.: A competitive facility location problem on a tree network with stochastic weights. European Journal of Operational Research 149, 47–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spoerhase, J., Wirth, H.C.: (r,p)-centroid problems on paths and trees. Theoretical Computer Science 410, 5128–5137 (2003)

    Article  MathSciNet  Google Scholar 

  19. Uno, T., Katagiri, H., Kato, K.: Competitive facility location with random demands. IAENG Transactions on Engineering Technologies 3, 83–93 (2009)

    Google Scholar 

  20. Uno, T., Katagiri, H., Kato, K.: Competitive facility location with fuzzy random demands. IAENG Transactions on Engineering Technologies 5, 99–108 (2010)

    Google Scholar 

  21. Uno, T., Katagiri, H., Kato, K.: A Stackelberg Location Problem on a Tree Network with Fuzzy Random Demands. In: Phillips-Wren, G., Jain, L.C., Nakamatsu, K., Howlett, R.J. (eds.) IDT 2010. SIST, vol. 4, pp. 581–588. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Uno, T., Katagiri, H., Kato, K.: A competitive facility location problem on a network with fuzzy random weights. Engineering Letters 19, 143–146 (2011)

    Google Scholar 

  23. Wagnera, M.R., Bhaduryb, J., Penga, S.: Risk management in uncapacitated facility location models with random demands. Computers & Operations Research 36, 1002–1011 (2009)

    Article  MathSciNet  Google Scholar 

  24. Wang, G.Y., Qiao, Z.: Linear programming with fuzzy random variable coefficients. Fuzzy Sets and Systems 57, 295–311 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wendell, R.E., McKelvey, R.D.: New perspective in competitive location theory. European Journal of Operational Research 6, 174–182 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Uno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uno, T., Katagiri, H., Kato, K. (2012). A Stackelberg Location on a Network with Fuzzy Random Demand Quantities Using Possibility Measure. In: Watada, J., Watanabe, T., Phillips-Wren, G., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29977-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29977-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29976-6

  • Online ISBN: 978-3-642-29977-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics