Advertisement

Super Pairwise Comparison Matrix in the Multiple Dominant AHP

  • Takao Ohya
  • Eizo Kinoshita
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 15)

Abstract

We have proposed a super pairwise comparison matrix (SPCM) to express all pairwise comparisons in the evaluation process of the dominant analytic hierarchy process (AHP) or the multiple dominant AHP (MDAHP) as a single pairwise comparison matrix. This paper shows, by means of a numerical counterexample, that in MDAHP an evaluation value resulting from the application of the logarithmic least-squares method (LLSM) to a SPCM does not necessarily coincide with that of the evaluation value resulting from the application of the geometric mean multiple dominant AHP (GMMDAHP) to the evaluation value obtained from each pairwise comparison matrix by using the geometric mean method.

Keywords

super pairwise comparison matrix dominant AHP the multiple dominant AHP logarithmic least square method the geometric mean multiple dominant AHP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)MATHGoogle Scholar
  2. 2.
    Kinoshita, E., Nakanishi, M.: Proposal of new AHP model in light of dominative relationship among alternatives. Journal of the Operations Research Society of Japan 42, 180–198 (1999)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Kinoshita, E., Sekitani, K., Shi, J.: Mathematical Properties of Dominant AHP and Concurrent Convergence Method. Journal of the Operations Research Society of Japan 45, 198–213 (2002)MathSciNetMATHGoogle Scholar
  4. 4.
    Ohya, T., Kinoshita, E.: The Geometric Mean Concurrent Convergence Method. In: Proceedings of the 10th International Symposium on the Analytic Hierarchy Process (2009) ISSN 1556-8296 Google Scholar
  5. 5.
    Ohya, T., Kinoshita, E.: Proposal of Super Pairwise Comparison Matrix. In: Watada, J., Phillips-Wren, G., Jain, L.C., Howlett, R.J., et al. (eds.) Intelligent Decision Technologies. SIST, vol. 10, pp. 247–254. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Harker, P.T.: Incomplete pairwise comparisons in the Analytic Hierarchy Process. Mathematical Modeling 9, 837–848 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Takao Ohya
    • 1
  • Eizo Kinoshita
    • 2
  1. 1.School of Science and EngineeringKokushikan UniversityTokyoJapan
  2. 2.Faculty of Urban ScienceMeijo UniversityGifuJapan

Personalised recommendations