Advertisement

Fuzzy Decision Making Model for Human Fall Detection and Inactivity Monitoring

  • Marina V. Sokolova
  • Antonio Fernández-Caballero
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 15)

Abstract

In this paper a fuzzy decision making model for fall detection and inactivity monitoring is presented. The inputs to the model are regions of interest (ROIs) corresponding to humans segmented in infrared video. The classification features proposed in fuzzy decision include geometric and kinematic parameters associated with more or less sudden changes in the tracked bounding boxes of the ROIs. The paper introduces a complete fuzzy-based fall detection system capable of identifying true and false falls, enhanced with inactivity monitoring aimed at confirming the need for medical assistance and/or care. The fall indicators used as well as their fuzzy model is explained in detail. As the proposed model has been tested for a wide number of static and dynamic falls, some exciting initial results are presented here.

Keywords

Fuzzy Model Linguistic Variable Fuzzy Decision Fall Detection Pedestrian Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D., Keller, J.M., Skubic, M., Chen, X., He, Z.: Recognizing falls from silhouettes. In: Proceedings of the IEEE Engineering in Medicine and Biology Society Conference, pp. 6388–6391 (2006)Google Scholar
  2. 2.
    Castillo, J.C., Serrano-Cuerda, J., Fernández-Caballero, A.: Robust People Segmentation by Static Infrared Surveillance Camera. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS, vol. 6096, pp. 348–357. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Chang, S.-L., Yang, F.-T., Wu, W.-P., Cho, Y.-A., Chen, S.-W.: Nighttime pedestrian detection using thermal imaging based on HOG feature. In: Sokolova, M.V., Fernández-Caballero, A. (eds.) International Conference on System Science and Engineering, pp. 694–698 (2011)Google Scholar
  4. 4.
    Davis, J.W., Sharma, V.: Robust detection of people in thermal imagery. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 4, pp. 713–716 (2004)Google Scholar
  5. 5.
    Doukas, C., Maglogiannis, I.: Emergency fall incidents detection in assisted living environments utilizing motion, sound, and visual perceptual components. IEEE Transactions on Information Technology in Biomedicine 15(2), 277–289 (2011)CrossRefGoogle Scholar
  6. 6.
    Escobet, A., Nebot, A., Cellier, F.E.: Fault diagnosis system based on fuzzy logic: Application to a valve actuator benchmark. Journal of Intelligent and Fuzzy Systems 22(4), 155–171 (2011)Google Scholar
  7. 7.
    Fang, Y., Yamada, K., Ninomiya, Y., Horn, B.K.P., Masaki, I.: A shape-independent method for pedestrian detection with far-infrared images. IEEE Transactions on Vehicular Technology 53(6), 1679–1697 (2004)CrossRefGoogle Scholar
  8. 8.
    Fernández-Caballero, A., Castillo, J.C., Serrano-Cuerda, J., Maldonado-Bascón, S.: Real-time human segmentation in infrared videos. Expert Systems with Applications 38(3), 2577–2584 (2011)CrossRefGoogle Scholar
  9. 9.
    Fernández-Caballero, A., Castillo, J.C., Martínez-Cantos, J., Martínez-Tomás, R.: Optical flow or image subtraction in human detection from infrared camera on mobile robot. Robotics and Autonomous Systems 58(12), 1273–1281 (2010)CrossRefGoogle Scholar
  10. 10.
    Khawandi, S., Daya, B., Chauvet, P.: Implementation of a monitoring system for fall detection in elderly healthcare. Procedia Computer Science 3, 216–220 (2011)CrossRefGoogle Scholar
  11. 11.
    Li, J., Gong, W., Li, W., Liu, X.: Robust pedestrian detection in thermal infrared imagery using the wavelet transform. Infrared Physics and Technology 53(4), 267–273 (2010)CrossRefGoogle Scholar
  12. 12.
    Liu, C.-L., Lee, C.-H., Lin, P.-M.: A fall detection system using k-nearest neighbor classifier. Expert Systems with Applications 37(10), 7174–7181 (2010)CrossRefGoogle Scholar
  13. 13.
    Loomis, A.: Figure Drawing for All it’s Worth, Viking Adult (1943)Google Scholar
  14. 14.
    Mo, H.-C., Leou, J.-J., Lin, C.-S.: Human behavior analysis using multiple 2d features and multicategory support vector machine. In: Proceedings of the IAPR Conference on Machine Vision Applications, pp. 46–49 (2009)Google Scholar
  15. 15.
    Moon, H., Chellappa, R., Rosenfeld, A.: Tracking of human activities using shapeencoded particle propagation. In: Processing of the International Conference on Image Processing, vol. 1, pp. 357–360 (2001)Google Scholar
  16. 16.
    Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., López, M.T.: Video sequence motion tracking by fuzzification techniques. Applied Soft Computing 10(1), 318–331 (2010)CrossRefGoogle Scholar
  17. 17.
    Otsu, N.: A threshold selection method from gray level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rougier, C., Meunier, J.: Demo: fall detection using 3d head trajectory extracted from a single camera video sequence. In: Proceedings of the First International Workshop on Video Processing for Security (2006)Google Scholar
  19. 19.
    Schmidt, J., Fritsch, J., Kwolek, B.: Kernel particle filter for real-time 3d body tracking in monocular color images. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, pp. 567–572 (2006)Google Scholar
  20. 20.
    Spark! Fuzzy Logic Editor (2011), http://www.louderthanabomb.com/spark.htm
  21. 21.
    Tan, S.C., Lim, C.P.: Fuzzy ARTMAP and hybrid evolutionary programming for pattern classification. Journal of Intelligent and Fuzzy Systems 22(2), 57–68 (2011)MathSciNetGoogle Scholar
  22. 22.
    Wei, X., Chai, J.: Modeling 3d human poses from uncalibrated monocular images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1873–1880 (2009)Google Scholar
  23. 23.
    Yu, M., Rhuma, A., Naqvi, S.M., Chambers, J.: Fall detection for the elderly in a smart room by using an enhanced one class support vector machine. In: Proceedings of the 17th International Conference on Digital Signal Processing, pp. 1–6 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marina V. Sokolova
    • 1
    • 2
  • Antonio Fernández-Caballero
    • 3
  1. 1.Instituto de Investigación en Informática de Albacete (I3A)Universidad de Castilla-La ManchaAlbaceteSpain
  2. 2.South-West State UniversityKurskRussia
  3. 3.Departamento de Sistemas InformáticosUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations