Building Linguistic Random Regression Model and Its Application

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 15)

Abstract

The objective of this paper is to build a model for the linguist random regression model as a vehicle to solve linguistic assessment given by experts. The difficulty in the direct measurement of certain characteristics makes their estimation highly impressive and this situation results in the use of fuzzy sets. In this sense, the linguistic treatment of assessments becomes essential when fully reflecting the subjectivity of the judgment process. When we know the attributes assessment, the linguistic regression model get the total assessment.

Keywords

Linguistic expression fuzzy random variable expected value fuzzy regression model variance confidence interval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Imai, S., Wang, S., Watada, J.: Regression Model Based on Fuzzy Random Variables. In: KES 2008, Part III. LNCS (LNAI), vol. 5179, pp. 127–135. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Watada, J., Pedrycz, W.: A fuzzy regression approach to acquisition of linguistic rules. In: Pedrycz, W. (ed.) Handbook on Granular Commutation, ch.32, pp. 719–730 (2008)Google Scholar
  3. 3.
    Kwakernaak, H.: Fuzzy random variables “I. Denitions and theorems”. Information Sciences 15(1), 1–29 (1978)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Kwakernaak, H.: Fuzzy random variables “II. Algorithm and examples”. Information Sciences 17(3), 253–278 (1979)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Liu, B.: Fuzzy random chance-constrained programming. IEEE Transactions on Fuzzy Systems 9(5), 713–720 (2001)CrossRefGoogle Scholar
  6. 6.
    Liu, B., Liu, Y.-K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems 10(4), 445–450 (2002)CrossRefGoogle Scholar
  7. 7.
    Liu, Y.-K., Liu, B.: Fuzzy random variable: A scalar expected value operator. Fuzzy Optimization and Decision Making 2(2), 143–160 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Watada, J., Wand, S., Pedrycz, W.: Building confidence-interval-based fuzzy random regression model. IEEE Transactions on Fuzzy Systems 11(6), 1273–1283 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Graduate School of Information, Production and SystemsWaseda UniversityWakamatsuJapan

Personalised recommendations