Skip to main content

Implications of Cellular Heterogeneity on Plant Cell Culture Performance

  • Chapter
  • First Online:
Biotechnology for Medicinal Plants

Abstract

Plant cell culture is an attractive platform technology for production and supply of several important plant-derived medicinal products. A unique characteristic of these dedifferentiated cells is the ability to grow as multicellular aggregates in suspension culture. The presence of these nonuniform aggregates results in creation of distinct microenvironments, which induce variations in cellular metabolism that are dependent on spatial position. This heterogeneity can lead to unpredictable and suboptimal performance in large-scale bioreactors. This review focuses on the role of cellular aggregation on the observed heterogeneity associated with plant cell cultures. Techniques used to study aggregation at the culture level as well as flow cytometric-based techniques to investigate and characterize heterogeneity at the single cell level are discussed. We focus on the commercially relevant production of the anticancer agent paclitaxel in Taxus suspension culture. An understanding of culture heterogeneity can lead to the development of targeted strategies to optimize culture performance for supply of medicinal products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albiol J, Robuste J, Casas C, Poch M (1993) Biomass estimation in plant cell cultures using an extended Kalman filter. Biotechnol Prog 9(2):174–178

    Google Scholar 

  • Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–616

    PubMed  Google Scholar 

  • Ananta I, Subroto MA, Doran PM (1995) Oxygen-transfer and culture characteristics of self-immobilized Solanum Aviculare aggregates. Biotechnol Bioengineering 47(5):541–549

    Google Scholar 

  • Aoyagi H, DiCosmo F, Tanaka H (2002) Efficient paclitaxel production using protoplasts isolated from cultured cells of Taxus cuspidata. Planta Med 68(5):420–424

    PubMed  Google Scholar 

  • Ashcroft R, Preston C, Cleland R, Critchley C (1986) Flow-cytometry of isolated-chloroplasts and thylakoids. Photobiochem Photobiophys 13(1–2):1–14

    Google Scholar 

  • Ayaydin F, Kotogany E, Dudits D, Horvath GV (2010) A rapid and robust assay for detection of S-phase cell cycle progression in plant cells and tissues by using ethynyl deoxyuridine. Plant Methods 6:5

    PubMed  Google Scholar 

  • Baebler S, Hren M, Camloh M, Ravnikar M, Bohanec B, Plaper I, Ucman R, Zel J (2005) Establishment of cell suspension cultures of Yew (Taxus x Media Rehd.) and assessment of their genomic stability. In Vitro Cell Dev-Pl 41(3):338–343

    Google Scholar 

  • Barrett P, Glennon B (1999) In-line FBRM monitoring of particle size in dilute agitated suspensions. Part Part Syst Char 16(5):207–211

    Google Scholar 

  • Becker H (1970) Studies on the formation of volatile substances in plant tissue cultures. Biochem Physiol Pflanzen 161:425–441

    Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Botany 95(1):45–90

    Google Scholar 

  • Bennett MD, Price HJ, Johnston JS (2008) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Botany 101(6):777–790

    Google Scholar 

  • Bergounioux C, Perennes C, Brown SC, Gadal P (1988a) Cytometric analysis of growth-regulator-dependent transcription and cell-cycle progression in petunia protoplast cultures. Planta 175(4):500–505

    Google Scholar 

  • Bergounioux C, Perennes C, Brown SC, Gadal P (1988b) Nuclear-Rna quantification in protoplast cell-cycle phases. Cytometry 9(1):84–87

    PubMed  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302(5652):1956–1960

    PubMed  Google Scholar 

  • Bolta Z, Baricevic D, Raspor P (2003) Biomass segregation in sage cell suspension culture. Biotechnol Lett 25(1):61–65

    PubMed  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161(5):839–851

    Google Scholar 

  • Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318(5851):801–806

    PubMed  Google Scholar 

  • Brodelius P (1985) The potential role of immobilization in plant cell biotechnology. Trends Biotechnol 3(11):280–285

    Google Scholar 

  • Capataz-Tafur J, Trejo-Tapia G, Rodríguez-Monroy M, Sepúlveda-Jiménez G (2011) Arabinogalactan proteins are involved in cell aggregation of cell suspension cultures of Beta vulgaris L. Plant Cell Tissue Organ Cult 106(1):169–177

    Google Scholar 

  • Cassells A, Curry R (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tiss Organ Cult 64(2):145–157

    Google Scholar 

  • Ceoldo S, Levi M, Marconi AM, Baldan G, Giarola M, Guzzo F (2005) Image analysis and in vivo imaging as tools for investigation of productivity dynamics in anthocyanin-producing cell cultures of Daucus carota. New Phytol 166(1):339–352

    PubMed  Google Scholar 

  • Chemler JA, Koffas MAG (2008) Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechnol 19(6):597–605

    PubMed  Google Scholar 

  • Citterio S, Sgorbati S, Levi M, Colombo BM, Sparvoli E (1992) Pcna and total nuclear-protein content as markers of cell-proliferation in Pea tissue. J Cell Sci 102:71–78

    Google Scholar 

  • Conia J, Bergounioux C, Perennes C, Muller P, Brown S, Gadal P (1987) Flow cytometric analysis and sorting of plant chromosomes from Petunia-Hybrida protoplasts. Cytometry 8(5):500–508

    PubMed  Google Scholar 

  • Croteau R, Ketchum R, Long R, Kaspera R, Wildung M (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5(1):75–97

    PubMed  Google Scholar 

  • Curtis WR, Tuerk AL (2006) Oxygen transport in plant tissue culture systems. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht, pp 173–186

    Google Scholar 

  • Damato F (1985) Cytogenetics of plant-cell and tissue-cultures and their regenerates. CRC Crit Rev Plant Sci 3(1):73–112

    Google Scholar 

  • Darzynkiewicz Z, Juan G, Srour EF (2001) Differential staining of DNA and RNA. Curr Protoc Cytom 7(7):3

    Google Scholar 

  • Darzynkiewicz Z, Sharpless T, Staianocoico L, Melamed MR (1980) Subcompartments of the G1 phase of cell-cycle detected by flow cytometry. Proc Nat Acad Sci U S A 77(11):6696–6699

    Google Scholar 

  • David H, Laigneau C, David A (1989) Growth and soluble proteins of cell cultures derived from explants and protoplasts of Pinus pinaster cotyledons. Tree Physiol 5(4):497–506

    PubMed  Google Scholar 

  • Davis DG, Stolzenberg RL, Dusky JA (1984) A comparison of various growth-parameters of cell-suspension cultures to determine phytotoxicity of Xenobiotics. Weed Sci 32(2):235–242

    Google Scholar 

  • De Jong DW, Jansen EF, Olson AC (1967) Oxidoreductive and hydrolytic enzyme patterns in plant suspension culture cells : local and time relationships. Exp Cell Res 47(1–2):139–156

    PubMed  Google Scholar 

  • Deusneumann B, Zenk MH (1984) Instability of indole alkaloid production in Catharanthus-roseus cell-suspension cultures. Planta Med 50(5):427–431

    Google Scholar 

  • Dhawan OP, Lavania UC (1996) Enhancing the productivity of secondary metabolites via induced polyploidy: a review. Euphytica 87(2):81–89

    Google Scholar 

  • Diwan R, Malpathak N (2010) Histochemical localization in Ruta graveolens cell cultures: elucidating the relationship between cellular differentiation and furanocoumarin production. In Vitro Cell Dev Plant 46(1):108–116

    Google Scholar 

  • Dixon RA (1995) Isolation and maintenance of callus and cell suspension cultures. In: Dixon RA (ed) Plant cell culture. IRL Press, Oxford, pp 1–20

    Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007a) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2(9):2233–2244

    PubMed  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007b) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley, Weinheim

    Google Scholar 

  • Dolezel J, Macas J, Lucretti S (2001) Flow analysis and sorting of plant chromosomes. Curr Protoc Cytom 5(5):3

    PubMed  Google Scholar 

  • Doran PM (1999) Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol Prog 15(3):319–335

    PubMed  Google Scholar 

  • Dornenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant-cell cultures. Enzyme Microb Technol 17(8):674–684

    Google Scholar 

  • Dougall DK (1964) A method of plant tissue culture giving high growth rates. Exp Cell Res 33(3):438–444

    PubMed  Google Scholar 

  • Dubuis B, Kut OM, Prenosil JE (1995) Pilot-scale culture of Coffea arabica in a novel loop fluidised bed reactor. Plant Cell Tissue Organ Cult 43(2):171–183

    Google Scholar 

  • Dunlop EH, Namdev PK, Rosenberg MZ (1994) Effect of fluid shear forces on plant-cell suspensions. Chem Eng Sci 49(14):2263–2276

    Google Scholar 

  • Edahiro J, Seki M (2006) Phenylpropanoid metabolite supports cell aggregate formation in strawberry cell suspension culture. J Biosci Bioeng 102(1):8–13

    PubMed  Google Scholar 

  • Eibl R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey KM (ed) Plant biotechnology and transgenic plants. Marcel Dekker, New York, pp 163–199

    Google Scholar 

  • Ellis DD, Zeldin EL, Brodhagen M, Russin WA, McCown BH (1996) Taxol production in nodule cultures of Taxus. J Nat Prod 59(3):246–250

    PubMed  Google Scholar 

  • Eriksson T (1965) Studies on growth requirements and growth measurements of cell cultures of Haplopappus gracilis. Physiol Plantarum 18(4):976–993

    Google Scholar 

  • Evans DA, Gamborg OL (1982) Chromosome stability of cell suspension cultures of Nicotiana spp. Plant Cell Rep 1:104–107

    Google Scholar 

  • Evans DE, Coleman JOD, Kearns A (2003) Plant cell culture. BIOS Scientific, London

    Google Scholar 

  • Galbraith DW (1990) Isolation and flow cytometric characterization of plant protoplasts. Methods Cell Biol 33:527–547

    PubMed  Google Scholar 

  • Galbraith DW (2004) Cytometry and plant sciences: a personal retrospective. Cytom Part A 58A(1):37–44

    Google Scholar 

  • Gaurav V, Kolewe ME, Roberts SC (2010) Flow cytometric methods to investigate culture heterogeneities for plant metabolic engineering. Methods Mol Biol 643:243–262

    PubMed  Google Scholar 

  • Ge F, Yuan XF, Wang XD, Zhao B, Wang YC (2006) Cell growth and shikonin production of Arnebia euchroma in a periodically submerged airlift bioreactor. Biotechnol Lett 28(8):525–529

    PubMed  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74(6):1175–1185

    PubMed  Google Scholar 

  • Graham MD (2003) The Coulter principle: foundation of an industry. J Assoc Lab Autom 8:72–81

    Google Scholar 

  • Grand d’Esnon A, Chee R, Harrell RC, Cantliffe DJ (1989) Qualitative and quantitative evaluation of liquid tissue cultures by artificial vision. Biofutur 76:S3

    Google Scholar 

  • Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24(9):403–409

    PubMed  Google Scholar 

  • Guzzo F, Cantamessa K, Portaluppi P, Levi M (2002) Flow cytometry and sorting of protoplasts from carrot cell cultures reveal two cell subpopulations with different morphogenetic potential. Plant Cell Rep 21(3):214–219

    Google Scholar 

  • Hahlbrock K, Kuhlen E (1972) Relationship between growth of parsley and soybean cells in suspension cultures and changes in conductivity of culture medium. Planta 108(3):271–278

    Google Scholar 

  • Hall RD, Yeoman MM (1987) Intercellular and intercultural heterogeneity in secondary metabolite accumulation in cultures of Catharanthus roseus following cell line selection. J Exp Bot 38(193):1391–1398

    Google Scholar 

  • Halperin W, Minocha S (1973) Benzyladenine effects on cell separation and wall metabolism. Can J Botany 51(7):1347–1354

    Google Scholar 

  • Hanagata N, Ito A, Uehara H, Asari F, Takeuchi T, Karube I (1993) Behavior of cell aggregate of Carthamus tinctorius L. cultured cells and correlation with red pigment formation. J Biotechnol 30(3):259–269

    Google Scholar 

  • Hara Y, Yamagata H, Morimoto T, Hiratsuka J, Yoshioka T, Fujita Y, Yamada Y (1989) Flow cytometric analysis of cellular berberine contents in high-producing and low-producing cell-lines of Coptis japonica obtained by repeated selection. Planta Medica 2:151–154

    Google Scholar 

  • Harkins KR, Galbraith DW (1987) Factors governing the flow cytometric analysis and sorting of large biological particles. Cytometry 8(1):60–70

    PubMed  Google Scholar 

  • Harrell RC, Bieniek M, Cantliffe DJ (1992) Noninvasive evaluation of somatic embryogenesis. Biotechnol Bioeng 39(4):378–383

    PubMed  Google Scholar 

  • Hawkins B (2008) Plants for life: medicinal plant conservation and botanic gardens. Botanic Gardens Conservation International, Richmond

    Google Scholar 

  • Hayashi T, Yoshida K (1988) Cell expansion and single-cell separation induced by Colchicine in suspension-cultured soybean cells. Proc Natl Acad Sci U S A 85(8):2618–2622

    PubMed  Google Scholar 

  • Heller FO (1973) DNS-Bestimmung an Keimwurzeln von Vicia faba L. mit Hilfe der Impulscytophotometrie. Ber Deutsch Bot Ges 86:437–441

    Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22(11):1415–1422

    PubMed  Google Scholar 

  • Henshaw GG, Jha KK, Mehta AR, Shakesha Dj, Street HE (1966) Studies on growth in culture of plant cells.1. Growth patterns in batch propagated suspension cultures. J Exp Bot 17(51):362–377

    Google Scholar 

  • Hoekstra SS, Harkes PAA, Verpoorte R, Libbenga KR (1990) Effect of auxin on cytodifferentiation and production of quinoline alkaloids in compact globular structures of Cinchona ledgeriana. Plant Cell Rep 8(10):571–574

    Google Scholar 

  • Huang CN, Cornejo MJ, Bush DS, Jones RL (1986) Estimating viability of plant protoplasts using double and single staining. Protoplasma 135(2):80–87

    Google Scholar 

  • Huang SY, Chou CJ (2000) Effect of gaseous composition on cell growth and secondary metabolite production in suspension culture of Stizolobium hassjoo cells. Bioproc Biosyst Eng 23(6):585–593

    Google Scholar 

  • Hulst AC, Meyer MMT, Breteler H, Tramper J (1989) Effect of aggregate size in cell cultures of Tagetes patula on thiophene production and cell growth. Appl Microbiol Biotechnol 30(1):18–25

    Google Scholar 

  • Ibaraki Y, Kenji K (2001) Application of image analysis to plant cell suspension cultures. Comput Electron Agric 30(1–3):193–203

    Google Scholar 

  • Ishii S (1988) Factors influencing protoplast viability of suspension-cultured rice cells during isolation process. Plant Physiol 88(1):26–29

    PubMed  Google Scholar 

  • James E, Lee JM (2000) An improved optical technique for monitoring plant cell concentration. Plant Cell Rep 19(3):283–285

    Google Scholar 

  • Jeffers P, Glennon B, Kieran P (2003) Focussed beam reflectance measurement (FBRM) monitoring of particle size and morphology in suspension cultures of Morinda citrifolia and Centaurea calcitrapa. Biotechnol Lett 25:2023–2028

    PubMed  Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res 3(13):1222–1239

    Google Scholar 

  • Kato A, Kawazoe S, Soh Y (1978) Viscosity of broth of tobacco cells in suspension culture. J Ferment Technol 56(3):224–228

    Google Scholar 

  • Kessler M, ten Hoopen HJG, Furusaki S (1999) The effect of the aggregate size on the production of ajmalicine and tryptamine in Catharanthus roseus suspension culture. Enzyme Microb Technol 24(5–6):308–315

    Google Scholar 

  • Ketchum REB, Gibson DM (1996) Paclitaxel production in suspension cell cultures of Taxus. Plant Cell Tissue Organ Cult 46(1):9–16

    Google Scholar 

  • Kieran P, Malone D, ML P (2000) Effects of hydrodynamic and interfacial forces on plant cell suspension systems. Adv Biochem Eng Biotechnol 67:139–185

    PubMed  Google Scholar 

  • Kieran PM, MacLoughlin PF, Malone DM (1997) Plant cell suspension cultures: some engineering considerations. J Biotechnol 59(1–2):39–52

    PubMed  Google Scholar 

  • Kim BJ, Gibson DM, Shuler ML (2004) Effect of subculture and elicitation on instability of Taxol production in Taxus sp suspension cultures. Biotechnol Prog 20(6):1666–1673

    PubMed  Google Scholar 

  • Kim Y, Wyslouzil BE, Weathers PJ (2002) Invited review: secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Plants 38(1):1–10

    Google Scholar 

  • King PJ, Mansfiel Kj, Street HE (1973) Control of growth and cell-division in plant-cell suspension cultures. Can J Botany 51(10):1807–1823

    Google Scholar 

  • King PJ, Street HE (1977) Growth patterns in cell cultures. In: Street HE (ed) Plant tissue and cell culture, 2nd edn. Blackwell, Oxford, pp 307–387

    Google Scholar 

  • Kinnersley AM, Dougall DK (1980) Increase in anthocyanin yield from wild-carrot cell-cultures by a selection system based on cell-aggregate size. Planta 149(2):200–204

    Google Scholar 

  • Kobayashi Y, Fukui H, Tabata M (1989) Effect of oxygen-supply on berberine production in cell-suspension cultures and immobilized cells of Thalictrum minus. Plant Cell Rep 8(4):255–258

    Google Scholar 

  • Kolewe ME, Gaurav V, Roberts SC (2008) Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 5(2):243–256

    PubMed  Google Scholar 

  • Kolewe ME, Henson MA, Roberts SC (2010) Characterization of aggregate size in Taxus suspension cell culture. Plant Cell Rep 29(5):485–494

    PubMed  Google Scholar 

  • Kolewe ME, Henson MA, Roberts SC (2011) Analysis of aggregate size as a process variable affecting paclitaxel accumulation in Taxus suspension cultures. Biotechnol Prog 27(5):1365–1372

    PubMed  Google Scholar 

  • Kolewe ME, Roberts SC, Henson MA (2012) A population balance equation model of aggregation dynamics in Taxus suspension cell cultures. Biotechnol Bioeng 109(2):472–482

    PubMed  Google Scholar 

  • Kougoulos E, Jones AG, Jennings KH, Wood-Kaczmar MW (2005) Use of focused beam reflectance measurement (FBRM) and process video imaging (PVI) in a modified mixed suspension mixed product removal (MSMPR) cooling crystallizer. J Cryst Growth 273(3–4):529–534

    Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876

    Google Scholar 

  • Kubek DJ, Shuler ML (1978a) Electronic measurement of plant-cell number and size in suspension culture. J Exp Bot 29(109):511–523

    Google Scholar 

  • Kubek DJ, Shuler ML (1978b) Generality of methods to obtain single-cell plant suspension cultures. Can J Botany 56(20):2521–2527

    Google Scholar 

  • Kubitschek HE (1969) Counting and sizing micro-organisms with the Coulter counter. In: Norris R, Ribbons DW (eds) Methods in microbiology. Academic Press, New York, pp 593–610

    Google Scholar 

  • Kuboi T, Yamada Y (1978a) Changing cell aggregations and lignification in tobacco suspension cultures. Plant Cell Physiol 19(3):437–443

    Google Scholar 

  • Kuboi T, Yamada Y (1978b) Regulation of enzyme-activities related to lignin synthesis in cell aggregates of tobacco cell-culture. Biochim Biophys Acta 542(2):181–190

    PubMed  Google Scholar 

  • Kurz WGW (1971) A chemostat for growing higher plant cells in single cell suspension cultures. Exp Cell Res 64(2):476–479

    PubMed  Google Scholar 

  • Lai Keng C, Koay Suan S, Low Poay H, Boey Peng L (2008) Effect of plant growth regulators and subculture frequency on callus culture and the establishment of Melastoma malabathricum cell suspension cultures for the production of pigments. Biotechnology 7:678–685

    Google Scholar 

  • Lamboursain L, Jolicoeur M (2005) Determination of cell concentration in a plant cell suspension using a fluorescence microplate reader. Plant Cell Rep 23(10):665–672

    PubMed  Google Scholar 

  • Lee EK, Jin YW, Park JH, Yoo YM et al (2010) Cultured cambial meristematic cells as a source of plant natural products. Nat Biotech 28(11):1213–1217

    Google Scholar 

  • Leonard E, Runguphan W, O’Connor S, Prather KJ (2009) Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nat Chem Biol 5(5):292–300

    PubMed  Google Scholar 

  • Li SY, Yuan W, Yang PY, Antoun MD, Balick MJ, Cragg GM (2010) Pharmaceutical crops: an overview. Pharm Crops 1:1–17

    Google Scholar 

  • Liau DF, Boll WG (1971) Growth, and patterns of growth and division, in cell suspension cultures of bush bean (Phaseolus vulgaris Cv Contender). Can J Botany 49(7):1131–1139

    Google Scholar 

  • Linden JC, Haigh JR, Mirjalili N, Phisaphalong M (2001) Gas concentration effects on secondary metabolite production by plant cell cultures. Adv Biochem Eng Biotechnol 72:27–62

    PubMed  Google Scholar 

  • Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65(20):2735–2749

    PubMed  Google Scholar 

  • Loureiro J, Rodriguez E, Dolezel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98(3):515–527

    PubMed  Google Scholar 

  • Loyola-Vargas VM, Miranda-Ham ML (1995) Root culture as a source of secondary metabolites of economic importance. In: Arnason JT, Mata R, Romeo JT (eds) Phytochemistry of medicinal plants. Plenum Press, New York, pp 217–248

    Google Scholar 

  • Machackova I, Zazimalova E, George EF (2007) Plant growth regulators I. In: George EF, Hall M, Klerk G (eds) Plant propagation by tissue culture, 3rd edn. Springer Dordrecht, pp 175–204

    Google Scholar 

  • Madhusudhan R, Rao SR, Ravishankar GA (1995) osmolarity as a measure of growth of plant-cells in suspension-cultures. Enzyme Microb Technol 17(11):989–991

    Google Scholar 

  • Madhusudhan R, Ravishankar GA (1996) Gradient of anthocyanin in cell aggregates of Daucus carota in suspension cultures. Biotechnol Lett 18(11):1253–1256

    Google Scholar 

  • Mak YX, Doran PM (1993) Effect of cell-cycle inhibition on synthesis of steroidal alkaloids by Solanum aviculare Plant Cells. Biotechnol Lett 15(10):1031–1034

    Google Scholar 

  • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802

    PubMed  Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26(6):548–560

    PubMed  Google Scholar 

  • Mavituna F, Park JM (1987) Size distribution of plant-cell aggregates in batch culture. Chem Eng J 35(1):B9–B14

    Google Scholar 

  • McCoy E, O’Connor SE (2008) Natural products from plant cell cultures. Prog Drug Res 65(329):331–370

    Google Scholar 

  • McDonald KA, Jackman AP, Hurst S (2001) Characterization of plant suspension cultures using the focused beam reflectance technique. Biotechnol Lett 23(4):317–324

    Google Scholar 

  • Melchers G, Bergmann L (1959) Untersuchungen an Kulturen von haploiden Geweben von Antirrhinum majus. Ber Dtsch Bot Ges 78:21–29

    Google Scholar 

  • Meyer JE, Pepin MF, Smith MAL (2002) Anthocyanin production from Vaccinium pahalae: limitations of the physical micro environment. J Biotechnol 93(1):45–57

    PubMed  Google Scholar 

  • Mishiba KI, Okamoto T, Mii M (2001) Increasing ploidy level in cell suspension cultures of Doritaenopsis by exogenous application of 2,4-dichlorophenoxyacetic acid. Physiol Plantarum 112(1):142–148

    Google Scholar 

  • Mishra BN, Ranjan R (2008) Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol App Biochem 49:1–10

    Google Scholar 

  • Morris P, Fowler M (1981) A new method for the production of fine plant cell suspension cultures. Plant Cell Tiss Organ Cult 1(1):15–24

    Google Scholar 

  • Muir WH, Hildebrandt AC, Riker AJ (1954) Plant tissue cultures produced from single isolated cells. Science 119(3103):877–878

    Google Scholar 

  • Mustafa NR, de Winter W, van Iren F, Verpoorte R (2011) Initiation, growth and cryopreservation of plant cell suspension cultures. Nat Protoc 6(6):715–742

    PubMed  Google Scholar 

  • Naill MC, Roberts SC (2004) Preparation of single cells from aggregated Taxus suspension cultures for population analysis. Biotechnol Bioeng 86(7):817–826

    PubMed  Google Scholar 

  • Naill MC, Roberts SC (2005a) Cell cycle analysis of Taxus suspension cultures at the single cell level as an indicator of culture heterogeneity. Biotechnol Bioeng 90(4):491–500

    PubMed  Google Scholar 

  • Naill MC, Roberts SC (2005b) Culture of isolated single cells from Taxus suspensions for the propagation of superior cell populations. Biotechnol Lett 27(21):1725–1730

    PubMed  Google Scholar 

  • Naill MC, Roberts SC (2005c) Flow cytometric analysis of protein content in Taxus protoplasts and single cells as compared to aggregated suspension cultures. Plant Cell Rep 23(8):528–533

    PubMed  Google Scholar 

  • Naill MC, Roberts SC (2005d) Flow cytometric identification of paclitaxel-accumulating subpopulations. Biotechnol Prog 21(3):978–983

    PubMed  Google Scholar 

  • Nash DT, Davies ME (1972) Some aspects of growth and metabolism of Pauls Scarlet rose cell suspensions. J Exp Bot 23(74):75–91

    Google Scholar 

  • Nesius KK, Fletcher JS (1973) Carbon-dioxide and ph requirements of non-photosynthetic tissue-culture cells. Physiol Plant 28(2):259–263

    Google Scholar 

  • Nicoloso FT, Val J, Vanderkeur M, Vaniren F, Kijne JW (1994) Flow-cytometric cell counting and DNA estimation for the study of plant-cell population-dynamics. Plant Cell Tiss Organ Cult 39(3):251–259

    Google Scholar 

  • Nunez-Palenius H, Cantliffe D, Klee H, Ochoa-Alejo N, Ramirez-Malagon R, Perez-Molphe E (2005) Methods in plant tissue culture. In: Shetty K, Paliyath G, Pometto A, Levin R (eds) Food biotechnology, 2nd edn. CRC Press, Boca Raton, pp 553–603

    Google Scholar 

  • O’Rourke AM, MacLoughlin PF (2005) A comparison of measurement techniques used in the analysis of evolving liquid–liquid dispersions. Chem Eng Process 44(8):885–894

    Google Scholar 

  • Ochatt SJ, Patat-Ochatt EM, Moessner A (2011) Ploidy level determination within the context of in vitro breeding. Plant Cell Tiss Organ Cult 104(3):329–341

    Google Scholar 

  • Ogino T, Hiraoka N, Tabata M (1978) Selection of high nicotine-producing cell lines of tobacco callus by single-cell cloning. Phytochemistry 17(11):1907–1910

    Google Scholar 

  • Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180(3):439–446

    PubMed  Google Scholar 

  • Ormerod MG (1990) Flow cytometry: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Paau AS, Cowles JR, Oro J (1977) Flow-microfluorometric analysis of Escherichia coli, Rhizobium meliloti, and Rhizobium japonicum at different stages of the growth cycle. Can J Microbiol 23(9):1165–1169

    PubMed  Google Scholar 

  • Pepin MF, Smith MAL, Reid JF (1999) Application of imaging tools to plant cell culture: relationship between plant cell aggregation and flavonoid production. In Vitro Cell Dev Plants 35(4):290–295

    Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21(6):1659–1668

    PubMed  Google Scholar 

  • Petit P, Diolez P, Muller P, Brown SC (1986) Binding of concanavalin-A to the outer-membrane of potato-tuber mitochondria detected by flow-cytometry. FEBS Lett 196(1):65–70

    Google Scholar 

  • Petit PX (1992) Flow cytometric analysis of rhodamine-123 fluorescence during modulation of the membrane-potential in plant-mitochondria. Plant Physiol 98(1):279–286

    PubMed  Google Scholar 

  • Phillips RL, Kaeppler SM, O P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Nati Acad Sci U S A 91:5222–5226

    Google Scholar 

  • Pistelli L, Giovannini A, Ruffoni B, Bertoli A, Pistelli L (2010) Hairy root cultures for secondary metabolites production. In: Giardi M, Ria G, Berra B (eds) Bio-farms for nutraceuticals: functional food and safety control by biosensors, 1st edn. Springer, New York, pp 167–184

    Google Scholar 

  • Prenosil JE, Hegglin M (1990) Self-immobilized plant cell aggregates in a bioreactor system with low shear stress. Ann N Y Acad Sci 613(1):234–247

    Google Scholar 

  • Qu JG, Zhang W, Yu XJ, Jin MF (2005) Instability of anthocyanin accumulation in Vitis vinifera L. var. Gamay Freaux suspension cultures. Biotechnol Bioprocess Eng 10(2):155–161

    Google Scholar 

  • Rajasekhar EW, Edwards M, Wilson SB, Street HE (1971) Studies on growth in culture of plant cells.11. Influence of shaking rate on growth of suspension cultures. J Exp Bot 22(70):107–117

    Google Scholar 

  • Ramulu KS, Dijkhuis P (1986) Flow cytometric analysis of polysomaty and in vitro genetic instability in potato. Plant Cell Rep 5(3):234–237

    Google Scholar 

  • Ranch JP, Giles KL (1980) Factors affecting growth and aggregate dissociation in batch suspension-cultures of Datura innoxia (Miller). Ann Bot 46(6):667–683

    Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153

    PubMed  Google Scholar 

  • Richmond WR, Jones RL, Fawell PD (1998) The relationship between particle aggregation and rheology in mixed silica-titania suspensions. Chem Eng J 71(1):67–75

    Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    PubMed  Google Scholar 

  • Roberts MF, Wink M (1998) Alkaloids: biochemistry, ecology, and medicinal applications. Plenum Press, New York

    Google Scholar 

  • Roberts SC, Naill M, Gibson DM, Shuler ML (2003) A simple method for enhancing paclitaxel release from Taxus canadensis cell suspension cultures utilizing cell wall digesting enzymes. Plant Cell Rep 21(12):1217–1220

    PubMed  Google Scholar 

  • Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3(7):387–395

    PubMed  Google Scholar 

  • Roberts SC, Kolewe M (2010) Plant natural products from cultured multipotent cells. Nat Biotech 28(11):1175–1176

    Google Scholar 

  • Rodriguez-Monroy M, Trejo-Espino JL, Jimenez-Aparicio A, Morante MDL, Villarreal ML, Trejo-Tapia G (2004) Evaluation of morphological properties of Solanum chrysotrichum cell cultures in a shake flask and fermentor and rheological properties of broths. Food Technol Biotech 42(3):153–158

    Google Scholar 

  • Russin WA, Ellis DD, Gottwald JR, Zeldin EL, Brodhagen M, Evert RF (1995) Immunocytochemical localization of Taxol in Taxus cuspidata. Int J Plant Sci 156(5):668–678

    Google Scholar 

  • Ryu DDY, Lee SO, Romani RJ (1990) Determination of growth-rate for plant-cell cultures—comparative studies. Biotechnol Bioeng 35(3):305–311

    PubMed  Google Scholar 

  • Safar J, Noa-Carrazana JC, Vrana J, Bartos J et al (2004) Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome 47(6):1182–1191

    PubMed  Google Scholar 

  • Sakamoto K, Iida K, Koyano T, Asada Y, Furuya T (1994) Studies on plant-tissue cultures.91. Method for selecting anthocyanin-producing cells by a cell sorter. Planta Med 60(3):253–259

    PubMed  Google Scholar 

  • Schlatmann JE, Vinke JL, Tenhoopen HJG, Heijnen JJ (1995) Relation between dissolved-oxygen concentration and Ajmalicine production-rate in high-density cultures of Catharanthus roseus. Biotechnol Bioeng 45(5):435–439

    PubMed  Google Scholar 

  • Schroder WP, Petit PX (1992) Flow-cytometry of spinach-chloroplasts—determination of intactness and lectin-binding properties of the envelope and the thylakoid membranes. Plant Physiol 100(3):1092–1102

    PubMed  Google Scholar 

  • Schwab B, Hulskamp M (2008) Vital stain for plant cytoplasm. CSH Protoc 2008: pdb prot4936

    Google Scholar 

  • Schween G, Schulte J, Reski R (2005) Effect of ploidy level on growth, differentiation, and morphology in Physcomitrella patens. Bryologist 108(1):27–35

    Google Scholar 

  • Scragg AH, Bond P, Leckie F, Cresswell R, Fowler MW, Allan EJ (1987) Growth and product formation by plant cell suspensions cultivated in bioreactors. In: Moody JW, Baker PB (eds) Bioreactors and biotransformations. Elsevier Applied Science Publications, New York, pp 12–25

    Google Scholar 

  • Shapiro H (1994) Practical flow cytometry. Wiley, New York

    Google Scholar 

  • Shapiro HM (1981) Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and pyronin Y. Cytometry 2(3):143–150

    PubMed  Google Scholar 

  • Sharma DP, Firoozabady E, Ayres NM, Galbraith DW (1983) Improvement of anther culture in Nicotiana—media, cultural conditions and flow cytometric determination of ploidy levels. Z Pflanzenphysiol 111(5):441–451

    Google Scholar 

  • Shiba T, Mii M (2005) Visual selection and maintenance of the cell lines with high plant regeneration ability and low ploidy level in Dianthus acicularis by monitoring with flow cytometry analysis. Plant Cell Rep 24(10):572–580

    PubMed  Google Scholar 

  • Shuler ML (1999) Overview of yield improvement strategies for secondary metabolite production in plant cell culture. In: Fu TJ, Sing G, Curtis WR (eds) Proceedings of the symposium on plant cell and tissue culture for the production of food ingredients. Kluwer Academic, New York, pp 75–83

    Google Scholar 

  • Siah CL, Doran PM (1991) Enhanced codeine and morphine production in suspended Papaver somniferum cultures after removal of exogenous hormones. Plant Cell Rep 10(6):349–353

    Google Scholar 

  • Simmons MJH, Azzopardi BJ (2001) Drop size distributions in dispersed liquid–liquid pipe flow. Int J Multiphas Flow 27(5):843–859

    Google Scholar 

  • Simpkins I, Collin HA, Street HE (1970) The growth of Acer pseudoplantanus cells in a synthetic liquid medium. Am J Bot 49:420–425

    Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228

    PubMed  Google Scholar 

  • Smith MAL, Reid JF (1996) Machine vision and automation in secondary metabolite bioprocess control. In: Misawa M, DiCosmo F (eds) Plant cell culture secondary metabolismtoward industrial application. CRC Press, Boca Raton, pp 53–77

    Google Scholar 

  • Smith MAL, Reid JF, Hansen AC, Li Z, Madhavi DL (1995) Non-destructive machine vision analysis of pigment-producing cell cultures. J Biotechnol 40:1–11

    Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. CRC Critic Rev Biotechnol 27(1):29–43

    Google Scholar 

  • Steiner HY, Dougall DK (1995) Ammonium uptake in carrot cell structures is influenced by pH-dependent cell aggregation. Physiol Plantarum 95(3):415–422

    Google Scholar 

  • Su WW (2006) Bioreactor engineering for recombinant protein production using plant cell suspension culture. In: Gupta DS, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Berlin, pp 135–159

    Google Scholar 

  • Sung ZR (1976) Turbidimetric measurement of plant-cell culture growth. Plant Physiol 57(3):460–462

    PubMed  Google Scholar 

  • Syklowska-Baranek K, Pietrosiuk A, Kokoszka A, Furmanowa M (2009) Enhancement of taxane production in hairy root culture of Taxus x media var. Hicksii. J Plant Physiol 166(17):1950–1954

    PubMed  Google Scholar 

  • Takayama S, Misawa M, Ko K, Misato T (1977) Effect of cultural conditions on growth of Agrostemma githago cells in suspension culture and concomitant production of an anti-plant virus substance. Physiol Plantarum 41(4):313–320

    Google Scholar 

  • Takeda T, Seki M, Furusaki S (1994) Hydrodynamic damage of cultured-cells of Carthamus tinctorius in a stirred-tank reactor. J Chem Eng Jpn 27(4):466–471

    Google Scholar 

  • Tanaka H, Aoyagi H, Jitsufuchi T (1992) Turbidimetric measurement of cell biomass of plant-cell suspensions. J Ferment Bioeng 73(2):130–134

    Google Scholar 

  • Tanaka H, Semba H, Jitsufuchi T, Harada H (1988) The effect of physical stress on plant cells in suspension cultures. Biotechnol Lett 10(7):485–490

    Google Scholar 

  • Tanaka H, Uemura M, Kaneko Y, Aoyagi H (1993) Estimation of cell biomass in plant-cell suspensions by the osmotic-pressure measurement of culture broth. J Ferment Bioeng 76(6):501–504

    Google Scholar 

  • Taticek RA, Mooyoung M, Legge RL (1990) Effect of bioreactor configuration on substrate uptake by cell-suspension cultures of the plant Eschscholtzia californica. App Microbiol Biot 33(3):280–286

    Google Scholar 

  • Thanh NT, Murthy HN, Yu KW, Hahn EJ, Paek KY (2005) Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Appl Microbiol Biot 67(2):197–201

    Google Scholar 

  • Thom M, Maretzki A, Komor E, Sakai W (1981) Nutrient uptake and accumulation by sugarcane cell cultures in relation to the growth cycle. Plant Cell Tiss Organ Cult 1(1):3–14

    Google Scholar 

  • Torrey JG, Merkel N, Reinert J (1962) Mitosis in suspension cultures of higher plant cells in a synthetic medium. Am J Cardiol 10(4):420–425

    Google Scholar 

  • Trejo TG, Hernandez TR, Trejo EJL, Jimenez AA, Rodriguez MM (2003) Analysis of morphological characteristics of Solanum chrysotrichum cell suspension cultures. World J Microbiol Biotechnol 19(9):929–932

    Google Scholar 

  • Tulecke W (1966) Continuous cultures of higher plant cells in liquid media—advantages and potential use of a phytostat. Ann N Y Acad Sci 139(A1):162–175

    Google Scholar 

  • Umetsu N, Ojima K, Matsuda K (1975) Enhancement of cell separation by colchicine in cell-suspension cultures of soybean. Planta 125(2):197–200

    Google Scholar 

  • Verma D, Van Huystee R (1970a) Cellular differentiation and peroxidase isozymes in cell cultures of peanut cotyledons. Can J Botany 48:429–431

    Google Scholar 

  • Verma D, Van Huystee R (1970b) Relationship between peroxidase, catalase and protein synthesis during cellular development in cell cultures of peanut. Can J Biochem 48:444–449

    PubMed  Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13(2):181–187

    PubMed  Google Scholar 

  • Verpoorte R, van der Heijden R, ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21(6):467–479

    Google Scholar 

  • Vongpaseuth K, Roberts SC (2007) Advancements in the understanding of Paclitaxel metabolism in tissue culture. Curr Pharm Biotechnol 8(4):219–236

    PubMed  Google Scholar 

  • Wallner SJ, Nevins DJ (1973) Formation and dissociation of cell aggregates in suspension cultures of Pauls Scarlet Rose. Am J Botany 60(3):255–261

    Google Scholar 

  • Watts MJ, Galpin IJ, Collin HA (1984) The effect of growth-regulators, light and temperature on flavor production in celery tissue-cultures. New Phytol 98(4):583–591

    Google Scholar 

  • Weber J, Georgiev V, Pavlov A, Bley T (2008) Flow cytometric investigations of diploid and tetraploid plants and in vitro cultures of Datura stramonium and Hyoscyamus niger. Cytom Part A 73A(10):931–939

    Google Scholar 

  • Williams PD, Wilkinson AK, Lewis JA, Black GM, Mavituna F (1988) A method for the rapid production of fine plant-cell suspension-cultures. Plant Cell Rep 7(6):459–462

    Google Scholar 

  • Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10(3):249–268

    PubMed  Google Scholar 

  • Wink M, Alfermann AW, Franke R, Wetterauer B et al (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genetic Res 3(02):90–100

    Google Scholar 

  • Wongsamuth R, Doran PM (1997) The filtration properties of Atropa belladonna plant cell suspensions; effects of hydrodynamic shear and elevated carbon dioxide levels on culture and filtration parameters. J Chem Technol Biotechnol 69(1):15–26

    Google Scholar 

  • Wu SQ, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24(11):1441–1447

    PubMed  Google Scholar 

  • Xu JF, Xie J, Han AM, Feng PS, Su ZG (1998) Kinetic and technical studies on large-scale culture of Rhodiola sachalinensis compact callus aggregates with air-lift reactors. J Chem Technol Biotechnol 72(3):227–234

    Google Scholar 

  • Yadav RK, Girke T, Pasala S, Xie MT, Reddy V (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci U S A 106(12):4941–4946

    PubMed  Google Scholar 

  • Yang YM, He DG, Scott KJJ (1994) Cell aggregates in wheat suspension cultures and their effects on isolation and culture of protoplasts. Plant Cell Rep 13(3):176–179

    Google Scholar 

  • Yanpaisan W, King NJC, Doran PM (1998) Analysis of cell cycle activity and population dynamics in heterogeneous plant cell suspensions using flow cytometry. Biotechnol Bioeng 58(5):515–528

    PubMed  Google Scholar 

  • Yanpaisan W, King NJC, Doran PM (1999) Flow cytometry of plant cells with applications in large-scale bioprocessing. Biotechnol Adv 17(1):3–27

    PubMed  Google Scholar 

  • Yesilirmak F, Sayers Z (2009) Heterelogous expression of plant genes. Int J Plant Genomics 2009:296482

    PubMed  Google Scholar 

  • Yuan X, Zhao B, Wang Y (2004) Cell culture of Saussurea medusa in a periodically submerged air-lift bioreactor. Biochem Eng J 21(3):235–239

    Google Scholar 

  • Zhao D, Huang Y, Jin Z, Qu W, Lu D (2003) Effect of aggregate size in cell cultures of Saussurea medusa on cell growth and jaceosidin production. Plant Cell Rep 21(11):1129–1133

    PubMed  Google Scholar 

  • Zhao J, Zhu WH, Hu Q, Guo YQ (2001) Compact callus cluster suspension cultures of Catharanthus roseus with enhanced indole alkaloid biosynthesis. In Vitro Cell Dev Plants 37(1):68–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan C. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patil, R.A., Roberts, S.C. (2013). Implications of Cellular Heterogeneity on Plant Cell Culture Performance. In: Chandra, S., LATA, H., Varma, A. (eds) Biotechnology for Medicinal Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29974-2_9

Download citation

Publish with us

Policies and ethics