Advertisement

Multivariate Analysis of Analytical Chemistry Data and Utility of the KNApSAcK Family Database to Understand Metabolic Diversity in Medicinal Plants

  • Taketo Okada
  • Farit Mochamad Afendi
  • Akira Katoh
  • Aki Hirai
  • Shigehiko Kanaya
Chapter

Abstract

Due to the advances in computational sciences and analytical chemistry, metabolome analysis, which aims to elucidate metabolic diversity in organisms, has been demonstrated. The metabolomic approach has been frequently employed in medicinal plant studies because it can comprehensively and simultaneously analyze numerous metabolites with medicinal properties. To demonstrate metabolome analysis of medicinal plants, this chapter introduces: (1) comprehensive metabolite analysis based on analytical chemistry, (2) multivariate analysis of analytical chemistry data, and (3) a metabolite database search to identify signal processing in chemical analysis. In particular, the utility and role of the KNApSAcK Family database, which is a medicinal plant database connected with metabolites constructed by our group, are explained in detail. Additionally, this chapter describes the effectiveness and potential of computational systems biology in medicinal plant research.

Keywords

Nuclear Magnetic Resonance High Performance Liquid Chromatography Medicinal Plant Hierarchical Cluster Analysis Nuclear Magnetic Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by the National Bioscience Database Center in Japan.

References

  1. Adnyana IK, Soemardji AA (2008) Evaluation of pharmacological efficacy of Jamu medicine. University of Toyama, Institute of Natural Medicine, ToyamaGoogle Scholar
  2. Allwood JW, Clarke A, Goodacre R, Mur LA (2010) Dual metabolomics: a novel approach to understanding plant-pathogen interactions. Phytochemistry 71:590–597PubMedCrossRefGoogle Scholar
  3. Avula B, Wang YH, Moraes RM, Khan IA (2011) Rapid analysis of lignans from leaves of Podophyllum peltatum L. samples using UPLC-UV-MS. Biomed Chromatogr. doi: 10.1002/bmc.1595 Google Scholar
  4. Bajpai V, Sharma D, Kumar B, Madhusudanan KP (2010) Profiling of Piper betle Linn. cultivars by direct analysis in real time mass spectrometric technique. Biomed Chromatogr 24:1283–1286PubMedCrossRefGoogle Scholar
  5. Cantarelli MA, Pellerano RG, Del Vitto LA, Marchevsky EJ, Camiña JM (2010) Characterisation of two South American food and medicinal plants by chemometric methods based on their multielemental composition. Phytochem Anal 21:550–555PubMedCrossRefGoogle Scholar
  6. Cardoso-Taketa AT, Pereda-Miranda R, Choi YH, Verpoorte R, Villarreal ML (2008) Metabolic profiling of the Mexican anxiolytic and sedative plant Galphimia glauca using nuclear magnetic resonance spectroscopy and multivariate data analysis. Planta Med 74:1295–1301PubMedCrossRefGoogle Scholar
  7. Chan CO, Chu CC, Mok DK, Chau FT (2007a) Analysis of berberine and total alkaloid content in Cortex Phellodendri by near infrared spectroscopy (NIRS) compared with high-performance liquid chromatography coupled with ultra-visible spectrometric detection. Anal Chim Acta 592:121–131PubMedCrossRefGoogle Scholar
  8. Chan EC, Yap SL, Lau AJ, Leow PC, Toh DF, Koh HL (2007b) Ultra-performance liquid chromatography/time-of-flight mass spectrometry based metabolomics of raw and steamed Panax notoginseng. Rapid Commun Mass Spectrom 21:519–528PubMedCrossRefGoogle Scholar
  9. Chapman JR (1996) Mass spectrometry: ionization methods and instrumentation. In: Chapman JR (ed) Protein and peptide analysis by mass spectrometry. Humana Press, TotowaCrossRefGoogle Scholar
  10. Chau FT, Chan HY, Cheung CY, Xu CJ, Liang Y, Kvalheim OM (2009) Recipe for uncovering the bioactive components in herbal medicine. Anal Chem 81:7217–7225PubMedCrossRefGoogle Scholar
  11. Chen Y, Wang J, Jia X, Tan X, Hu M (2011) Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yinyanghuo. Molecules 16:1336–1348PubMedCrossRefGoogle Scholar
  12. Chen M, Zhao L, Jia W (2005) Metabonomic study on the biochemical profiles of a hydrocortisone-induced animal model. J Proteome Res 4:2391–2396PubMedCrossRefGoogle Scholar
  13. Choe S, Kim S, Lee C, Yang W, Park Y, Choi H, Chung H, Lee D, Hwang BY (2011) Species identification of Papaver by metabolite profiling. Forensic Sci Int. doi: 10.1016/j.forsciint.2011.04.015 PubMedGoogle Scholar
  14. Choi YH, Kim HK, Hazekamp A, Erkelens C, Lefeber AW, Verpoorte R (2004) Metabolomic differentiation of Cannabis sativa cultivars using 1H NMR spectroscopy and principal component analysis. J Nat Prod 67:953–957PubMedCrossRefGoogle Scholar
  15. Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J, Blancher C, Gauguier D, Lindon JC, Holmes E, Nicholson J (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem 77:1282–1289PubMedCrossRefGoogle Scholar
  16. Dan M, Su M, Gao X, Zhao T, Zhao A, Xie G, Qiu Y, Zhou M, Liu Z, Jia W (2008) Metabolite profiling of Panax notoginseng using UPLC-ESI-MS. Phytochemistry 69:2237–2244PubMedCrossRefGoogle Scholar
  17. Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster analysis, 5th edn. Wiley, New JerseyCrossRefGoogle Scholar
  18. Fan Q, Wang Y, Sun P, Liu S, Li Y (2010) Discrimination of Ephedra plants with diffuse reflectance FT-NIRS and multivariate analysis. Talanta 80:1245–1250PubMedCrossRefGoogle Scholar
  19. Fernandes MB, Scotti MT, Ferreira MJ, Emerenciano VP (2008) Use of self-organizing maps and molecular descriptors to predict the cytotoxic activity of sesquiterpene lactones. Eur J Med Chem 43:2197–2205PubMedCrossRefGoogle Scholar
  20. Fischedick JT, Hazekamp A, Erkelens T, Choi YH, Verpoorte R (2010) Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 71:2058–2073PubMedCrossRefGoogle Scholar
  21. Frédérich M, Jansen C, de Tullio P, Tits M, Demoulin V, Angenot L (2010) Metabolomic analysis of Echinacea spp. by 1H nuclear magnetic resonance spectrometry and multivariate data analysis technique. Phytochem Anal 21:61–65PubMedCrossRefGoogle Scholar
  22. Ge GB, Zhang YY, Hao DC, Hu Y, Luan HW, Liu XB, He YQ, Wang ZT, Yang L (2008) Chemotaxonomic study of medicinal Taxus species with fingerprint and multivariate analysis. Planta Med 74:773–779PubMedCrossRefGoogle Scholar
  23. Gorzsás A, Stenlund H, Persson P, Trygg J, Sundberg B (2011) Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem. Plant J 66:903–914PubMedCrossRefGoogle Scholar
  24. Ioset KN, Nyberg NT, Van Diermen D, Malnoe P, Hostettmann K, Shikov AN, Jaroszewski JW (2011) Metabolic profiling of Rhodiola rosea rhizomes by ¹H NMR spectroscopy. Phytochem Anal 22:158–165PubMedCrossRefGoogle Scholar
  25. Jackson JE (1991) A user’s guide to principal components. Wiley, New YorkCrossRefGoogle Scholar
  26. Jaiswal R, Deshpande S, Kuhnert N (2011) Profiling the chlorogenic acids of Rudbeckia hirta, Helianthus tuberosus, Carlina acaulis, Symphyotrichum novae-angliae leaves by LC-MSn. Phytochem Anal. doi: 10.1002/pca.1299 PubMedGoogle Scholar
  27. Johnson HE, Broadhurst D, Kell DB, Theodorou MK, Merry RJ, Griffith GW (2004) High-throughput metabolic fingerprinting of legume silage fermentations via Fourier transform infrared spectroscopy and chemometrics. Appl Environ Microbiol 70:1583–1592PubMedCrossRefGoogle Scholar
  28. Kanaya S, Kinouchi M, Abe T, Kudo Y, Yamada Y, Nishi T, Mori H, Ikemura T (2001) Analysis of codon usage diversity of bacterial gene with a self-organizing map (SOM). Gene 276:89–99PubMedCrossRefGoogle Scholar
  29. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res 28:27–30PubMedCrossRefGoogle Scholar
  30. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucl Acids Res 38:D355–D360PubMedCrossRefGoogle Scholar
  31. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucl Acids Res 34:D354–D357PubMedCrossRefGoogle Scholar
  32. Kang J, Choi MY, Kang S, Kwon HN, Wen H, Lee CH, Park M, Wiklund S, Kim HJ, Kwon SW, Park S (2008) Application of a 1H nuclear magnetic resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discriminating between Korean and Chinese herbal medicines. J Agric Food Chem 56:11589–11595PubMedCrossRefGoogle Scholar
  33. Kim DH, Jarvis RM, Xu Y, Oliver AW, Allwood JW, Hampson L, Hampson IN, Goodacre R (2010) Combining metabolic fingerprinting and footprinting to understand the phenotypic response of HPV16 E6 expressing cervical carcinoma cells exposed to the HIV anti-viral drug lopinavir. Analyst 135:1235–1244PubMedCrossRefGoogle Scholar
  34. Kim HK, Choi YH, Erkelens C, Lefeber AW, Verpoorte R (2005) Metabolic fingerprinting of Ephedra species using 1H-NMR spectroscopy and principal component analysis. Chem Pharm Bull 53:105–109PubMedCrossRefGoogle Scholar
  35. Kim HK, Choi YH, Verpoorte R (2011) NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 29:267–275PubMedCrossRefGoogle Scholar
  36. Kohonen T (1990) Self-organizing map. Proc IEEE 78:1464–1480CrossRefGoogle Scholar
  37. Kokalj M, Kolar J, Trafela T, Kreft S (2011) Differences among Epilobium and Hypericum species revealed by four IR spectroscopy modes: transmission, KBr tablet, diffuse reflectance and ATR. Phytochem Anal. doi: 10.1002/pca.1315 PubMedGoogle Scholar
  38. Lee EJ, Shaykhutdinov R, Weljie AM, Vogel HJ, Facchini PJ, Park SU, Kim YK, Yang TJ (2009) Quality assessment of ginseng by 1H NMR metabolite fingerprinting and profiling analysis. J Agric Food Chem 57:7513–7522PubMedCrossRefGoogle Scholar
  39. Li P, Yang L, Gong Y (2009) Application of systems biology technology in research of traditional Chinese medicine. J Trad Chin Med 29:153–157CrossRefGoogle Scholar
  40. Liang Y, Xie P, Chan K (2004) Quality control of herbal medicines. J Chromatogr B 812:53–70Google Scholar
  41. Liang X, Zhang X, Dai W, Lv Y, Yan S, Zhang W (2009) A combined HPLC-PDA and HPLC-MS method for quantitative and qualitative analysis of 10 major constituents in the traditional Chinese medicine Zuo Gui Wan. J Pharm Biomed Anal 49:931–936PubMedCrossRefGoogle Scholar
  42. Liu Y, Xu F, Zeng X, Yang L, Deng Y, Wu Z, Feng Y, Li X (2010) Application of a liquid chromatography/tandem mass spectrometry method to pharmacokinetic study of mangiferin in rats. J Chromatogr B Anal Technol Biomed Life Sci 878:3345–3350CrossRefGoogle Scholar
  43. Lu HM, Liang YZ, Wu XJ, Qiu P (2006) Tentative fingerprint-efficacy study of Houttuynia cordata injection in quality control of traditional Chinese medicine. Chem Pharm Bull 54:725–730PubMedCrossRefGoogle Scholar
  44. Lubbe A, Pomahacova P, Choi Y, Verpoorte R (2009) Analysis of metabolic variation and galanthamine content in Narcissus bulbs by 1H NMR. Phytochem Anal 21:66–72CrossRefGoogle Scholar
  45. Matsumoto C, Kojima T, Ogawa K, Kamegai S, Oyama T, Shibagaki Y, Kawasaki T, Fujinaga H, Takahashi K, Hikiami H, Goto H, Kiga C, Koizumi K, Sakurai H, Muramoto H, Shimada Y, Yamamoto M, Terasawa K, Takeda S, Saiki I (2008) A proteomic approach for the diagnosis of ‘Oketsu’ (blood stasis), a pathophysiologic concept of Japanese traditional (Kampo) medicine. Evid Based Complem Altern Med 5:463–474CrossRefGoogle Scholar
  46. Ni Y, Peng Y, Kokot S (2008) Fingerprinting of complex mixtures with the use of high performance liquid chromatography, inductively coupled plasma atomic emission spectroscopy and chemometrics. Anal Chim Acta 616:19–27PubMedCrossRefGoogle Scholar
  47. Okada T, Afendi FM, Altaf-Ul-Amin MD, Takahashi H, Nakamura K, Kanaya S (2010) Metabolomics of medicinal plants: the importance of multivariate analysis of analytical chemistry data. Curr Comput Aided Drug Des 6:179–196PubMedCrossRefGoogle Scholar
  48. Okada T, Nakamura Y, Kanaya S, Takano A, Malla KJ, Nakane T, Kitayama M, Sekita S (2009) Metabolome analysis of Ephedra plants with different contents of ephedrine alkaloids by using UPLC-Q-TOF-MS. Planta Med 75:1356–1362PubMedCrossRefGoogle Scholar
  49. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445PubMedCrossRefGoogle Scholar
  50. Pongsuwan W, Bamba T, Harada K, Yonetani T, Kobayashi A, Fukusaki E (2008) High-throughput technique for comprehensive analysis of Japanese green tea quality assessment using ultra-performance liquid chromatography with time-of-flight mass spectrometry (UPLC/TOF MS). J Agric Food Chem 56:10705–10708PubMedCrossRefGoogle Scholar
  51. Qiao X, He WN, Xiang C, Han J, Wu LJ, Guo DA, Ye M (2011) Qualitative and quantitative analyses of flavonoids in Spirodela polyrrhiza by high-performance liquid chromatography coupled with mass spectrometry. Phytochem Anal 22:475–483PubMedCrossRefGoogle Scholar
  52. Qiao X, Zhang X, Ye M, Su YF, Dong J, Han J, Yin J, Guo DA (2010) Rapid characterization of triterpene saponins from Conyza blinii by liquid chromatography coupled with mass spectrometry. Rapid Commun Mass Spectrom 24:3340–3350PubMedCrossRefGoogle Scholar
  53. Qin XM, Dai YT, Zhang LZ, Guo XQ, Shao HX (2009) Discrimination of three medicinal materials from the Citrus genus by HPLC fingerprint coupled with two complementary software. Phytochem Anal 20:307–313PubMedCrossRefGoogle Scholar
  54. Qiu J (2007) Traditional medicine: a culture in the balance. Nature 448:126–128PubMedCrossRefGoogle Scholar
  55. Qiu Y, Lu X, Pang T, Zhu S, Kong H, Xu G (2007) Study of traditional Chinese medicine volatile oils from different geographical origins by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) in combination with multivariate analysis. J Pharm Biomed Anal 43:1721–1727PubMedCrossRefGoogle Scholar
  56. Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489PubMedCrossRefGoogle Scholar
  57. Sangat HM, Zuhud EAM, Damayanti EK (2000) Kamus penyakit dan tumbuhan obat Indonesia: etnofitomedika. Yayasan Obor Indonesia, JakartaGoogle Scholar
  58. Sidhu OP, Annarao S, Chatterjee S, Tuli R, Roy R, Khetrapal CL (2011) Metabolic alterations of Withania somnifera (L.) Dunal fruits at different developmental stages by NMR spectroscopy. Phytochem Anal 22:495–502CrossRefGoogle Scholar
  59. Shinbo Y, Nakamura Y, Altaf-Ul-Amin MD, Asahi H, Kurokawa K, Arita M, Saito K, Ohta D, Shibata D, Kanaya S (2006) KNApSAcK: a comprehensive species-metabolite relationship database. In: Saito K, Dixon RA, Willmitzer L (eds) Plant metabolomics (Biotechnology in agriculture and forestry), vol 57. Springer-Verlag, HeidelbergGoogle Scholar
  60. Smith RD, Light-Wahl KJ, Winger BE, Goodleftt DR (1994) Electronspray ionization. In: Matsuo T, Caprioli RM, Gross ML, Seyama Y (eds) Biological mass spectrometry: present and future. Wiley, New York, pp 41–74Google Scholar
  61. Soares PK, Scarminio IS (2008) Multivariate chromatographic fingerprint preparation and authentication of plant material from the genus Bauhinia. Phytochem Anal 19:78–85PubMedCrossRefGoogle Scholar
  62. Takahashi H, Hirai A, Shojo M, Matsuda K, Parvin AK, Asahi H, Nakamura K, Altaf-Ul-Amin MD, Kanaya S (2011) Species-metabolite relation database KNApSAcK and its multifaceted retrieval system, KNApSAcK family. In: Casciano DA, Sahu SC (eds) Handbook of systems toxicology. Wiley, New YorkGoogle Scholar
  63. Tan SN, Yong JW, Teo CC, Ge L, Chan YW, Hew CS (2011) Determination of metabolites in Uncaria sinensis by HPLC and GC-MS after green solvent microwave-assisted extraction. Talanta 83:891–898PubMedCrossRefGoogle Scholar
  64. Tanaka K, Kuba Y, Ina A, Watanabe H, Komatsu K (2008a) Prediction of cyclooxygenase inhibitory activity of curcuma rhizome from chromatograms by multivariate analysis. Chem Pharm Bull 56:936–940PubMedCrossRefGoogle Scholar
  65. Tanaka K, Kuba Y, Sasaki T, Hiwatashi F, Komatsu K (2008b) Quantitation of curcuminoids in curcuma rhizome by near-infrared spectroscopic analysis. J Agric Food Chem 56:8787–8792PubMedCrossRefGoogle Scholar
  66. Tanaka K, Tamura T, Fukuda S, Batkhuu J, Sanchir C, Komatsu K (2008c) Quality evaluation of Astragali Radix using a multivariate statistical approach. Phytochemistry 69:2081–2087PubMedCrossRefGoogle Scholar
  67. Tarachiwin L, Katoh A, Ute K, Fukusaki E (2008) Quality evaluation of Angelica acutiloba Kitagawa roots by 1H NMR-based metabolic fingerprinting. J Pharm Biomed Anal 48:42–48PubMedCrossRefGoogle Scholar
  68. Tianniam S, Bamba T, Fukusaki E (2009) Non-targeted metabolite fingerprinting of oriental folk medicine Angelica acutiloba roots by ultra performance liquid chromatography time-of-flight mass spectrometry. J Sep Sci 32:2233–2244PubMedCrossRefGoogle Scholar
  69. Tianniam S, Tarachiwin L, Bamba T, Kobayashi A, Fukusaki E (2008) Metabolic profiling of Angelica acutiloba roots utilizing gas chromatography-time-of-flight-mass spectrometry for quality assessment based on cultivation area and cultivar via multivariate pattern recognition. J Biosci Bioeng 105:655–659PubMedCrossRefGoogle Scholar
  70. Tilton R, Paiva AA, Guan JQ, Marathe R, Jiang Z, van Eyndhoven W, Bjoraker J, Prusoff Z, Wang H, Liu SH, Cheng YC (2010) A comprehensive platform for quality control of botanical drugs (PhytomicsQC): a case study of Huangqin Tang (HQT) and PHY906. Chin Med 5:30PubMedCrossRefGoogle Scholar
  71. Tomer KB (2001) Separations combined with mass spectrometry. Chem Rev 101:297–328PubMedCrossRefGoogle Scholar
  72. Tong L, Wan M, Zhou D, Gao J, Zhu Y, Bi K (2010) LC-MS/MS determination and pharmacokinetic study of albiflorin and paeoniflorin in rat plasma after oral administration of Radix Paeoniae Alba extract and Tang−Min−Ling−Wan. Biomed Chromatogr 24:1324–1331PubMedCrossRefGoogle Scholar
  73. Trygg J (2004) Prediction and spectral profile estimation in multivariate calibration. J Chemom 18:166–172CrossRefGoogle Scholar
  74. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemom 16:119–128CrossRefGoogle Scholar
  75. van der Kooy F, Maltese F, Choi YH, Kim HK, Verpoorte R (2009) Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Med 75:763–775PubMedCrossRefGoogle Scholar
  76. Verma RS, Padalia RC, Chauhan A, Verma RK, Yadav AK, Singh HP (2010) Chemical diversity in Indian oregano (Origanum vulgare L.). Chem Biodivers 7:2054–2064PubMedCrossRefGoogle Scholar
  77. Vestal ML (2001) Methods of ion generation. Chem Rev 101:361–375PubMedCrossRefGoogle Scholar
  78. Wang H, Hollywood K, Jarvis RM, Lloyd JR, Goodacre R (2010) Phenotypic characterization of Shewanella oneidensis MR-1 under aerobic and anaerobic growth conditions by using fourier transform infrared spectroscopy and high-performance liquid chromatography analyses. Appl Environ Microbiol 76:6266–6276PubMedCrossRefGoogle Scholar
  79. Wang M, Lamers RJ, Korthout HA, van Nesselrooij JH, Witkamp RF, van der Heijden R, Voshol PJ, Havekes LM, Verpoorte R, van der Greef J (2005) Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phytother Res 19:173–182PubMedCrossRefGoogle Scholar
  80. Wang T, An Y, Zhao C, Han L, Boakye-Yiadom M, Wang W, Zhang Y (2011) Regulation effects of Crataegus pinnatifida leaf on glucose and lipids metabolism. J Agric Food Chem 59:4987–4994PubMedCrossRefGoogle Scholar
  81. Wang X, Lv H, Sun H, Liu L, Yang B, Sun W, Wang P, Zhou D, Zhao L, Dou S, Zhang G, Cao H (2008) Metabolic urinary profiling of alcohol hepatotoxicity and intervention effects of Yin Chen Hao Tang in rats using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. J Pharm Biomed Anal 48:1161–1168PubMedCrossRefGoogle Scholar
  82. Wang Y, Tang H, Nicholson JK, Hylands PJ, Sampson J, Whitcombe I, Stewart CG, Caiger S, Oru I, Holmes E (2004) Metabolomic strategy for the classification and quality control of phytomedicine: a case study of chamomile flower (Matricaria recutita L.). Planta Med 70:250–255PubMedCrossRefGoogle Scholar
  83. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  84. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78:4430–4442PubMedCrossRefGoogle Scholar
  85. Wharfe ES, Winder CL, Jarvis RM, Goodacre R (2010) Monitoring the effects of chiral pharmaceuticals on aquatic microorganisms by metabolic fingerprinting. Appl Environ Microbiol 76:2075–2085PubMedCrossRefGoogle Scholar
  86. Winder CL, Cornmell R, Schuler S, Jarvis RM, Stephens GM, Goodacre R (2011) Metabolic fingerprinting as a tool to monitor whole-cell biotransformations. Anal Bioanal Chem 399:387–401PubMedCrossRefGoogle Scholar
  87. Wishart DS, Knox C, Guo AC et al (2009) HMDB: a knowledgebase for the human metabolome. Nucl Acids Res 37(database issue):D603–D610Google Scholar
  88. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Sys 58:109–130CrossRefGoogle Scholar
  89. Wu YW, Sun SQ, Zhou Q, Leung HW (2008) Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopy for rapid quality assessment of Chinese medicine preparation Honghua Oil. J Pharm Biomed Anal 46:498–504PubMedCrossRefGoogle Scholar
  90. Xiang Z, Wang XQ, Cai XJ, Zeng S (2011) Metabolomics study on quality control and discrimination of three Curcuma species based on gas chromatograph-mass spectrometry. Phytochem Anal 22:411–418PubMedCrossRefGoogle Scholar
  91. Xie G, Plumb R, Su M, Xu Z, Zhao A, Qiu M, Long X, Liu Z, Jia W (2008) Ultra-performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research. J Sep Sci 31:1015–1026PubMedCrossRefGoogle Scholar
  92. Yan G, Sun H, Sun W, Zhao L, Meng X, Wang X (2010) Rapid and global detection and characterization of aconitum alkaloids in Yin Chen Si Ni Tang, a traditional Chinese medical formula, by ultra performance liquid chromatography-high resolution mass spectrometry and automated data analysis. J Pharm Biomed Anal 53:421–431PubMedCrossRefGoogle Scholar
  93. Yang S, Chen C, Zhao Y, Xi W, Zhou X, Chen B, Fu C (2011) Association between chemical and genetic variation of wild and cultivated populations of Scrophularia ningpoensis hemsl. Planta Med 77:865–871PubMedCrossRefGoogle Scholar
  94. Yi LZ, Yuan DL, Liang YZ, Xie PS, Zhao Y (2007) Quality control and discrimination of Pericarpium Citri Reticulatae and Pericarpium Citri Reticulatae Viride based on high-performance liquid chromatographic fingerprints and multivariate statistical analysis. Anal Chim Acta 588:207–215PubMedCrossRefGoogle Scholar
  95. Zhang S, Nagana Gowda GA, Ye T, Raftery D (2010) Advances in NMR-based biofluid analysis and metabolite profiling. Analyst 135:1490–1498PubMedCrossRefGoogle Scholar
  96. Zhu Z, Zhao L, Liu X, Chen J, Zhang H, Zhang G, Chai Y (2010) Comparative pharmacokinetics of baicalin and wogonoside by liquid chromatography-mass spectrometry after oral administration of Xiaochaihu Tang and Radix scutellariae extract to rats. J Chromatogr B Anal Technol Biomed Life Sci 878:2184–2190PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Taketo Okada
    • 1
  • Farit Mochamad Afendi
    • 2
  • Akira Katoh
    • 3
  • Aki Hirai
    • 2
  • Shigehiko Kanaya
    • 2
  1. 1.Faculty of Pharmaceutical Sciences at Kagawa CampusTokushima Bunri UniversitySanuki-CityJapan
  2. 2.Graduate School of Information ScienceNara Institute of Science and TechnologyIkomaJapan
  3. 3.Graduate School of Biological SciencesNara Institute of Science and TechnologyIkomaJapan

Personalised recommendations