Skip to main content

Molecular Biology and Biotechnology of Quinolizidine Alkaloid Biosynthesis in Leguminosae Plants

  • Chapter
  • First Online:

Abstract

Quinolizidine alkaloids (QAs) are an important class of plant secondary metabolites which are mainly distributed in the genus Lupinus. QAs are important for mankind as sources of drug and are assumed to play an important role for the survival of plant as defense compounds against pathogenic organisms or predators. However, the molecular mechanism underlying QA biosynthesis is poorly understood. Over the past decade, several molecular biotechnology techniques, such as amplified fragment length polymorphism, random amplified polymorphic DNA, and PCR-selected subtraction have been employed to identify the genes involved in QA biosynthesis. Nevertheless, only the genes that are involved in the formation of QA-ester in Lupinus plant and related genes have been identified. Alkaloid-free cultivar of Lupinus plants has gained attention not only as feed supplement but also as ingredient for human food. Various genetic mapping and cross-comparison of genome models in each of agronomical and economically important traits in Lupinus plants have been reported which would be valuable information for molecular breeding and evolutionary study of Leguminous plants. This review outlines an overview of QAs, such as the occurrences, chemistry, biochemistry, and chemotaxonomy and recent studies focusing on molecular biology and biotechnology of QA biosynthesis in Leguminosae plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. Nat Biotechnol 25:195–203

    CAS  Google Scholar 

  • Babaoglu M, Davey MR (2004) Transformed roots of Lupinus mutabilis: induction, culture and isoflavone biosynthesis. Plant Cell Tiss Org 78:29–36

    Article  CAS  Google Scholar 

  • Babaoglu M, McCabe MS, Power JB, Davey MR (2000) Agrobacterium-mediated transformation of Lupinus mutabilis L. using shoot apical explants. Acta Physiol Plant 22:111–119

    Article  CAS  Google Scholar 

  • Berlin J, Fecker LF, Rugenhagen C, Sator C, Strack D, Witte L, Wray V (1991) Isoflavone glycoside formation in transformed and non-transformed suspension and hairy cultures of L. polyphyllus and L. hartwegii. Z Naturforsch 46c:725–734

    Google Scholar 

  • Boersma JG, Pallotta M, Li C, Buirchell BJ, Sivasithamparam K, Yang H (2005) Construction of a genetic linkage map using MFLP and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus angustifolius L.). Cell Mol Biol Lett 10:331–344

    PubMed  CAS  Google Scholar 

  • Bourguad F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  Google Scholar 

  • Bunsupa S, Okada T, Saito K, Yamazaki M (2011) An acyltransferase-like gene obtained by differential gene expression profiles of quinolizidine alkaloid-producing and nonproducing cultivars of Lupinus angustifolius. Plant Biotechnol 28:89–94

    Article  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  PubMed  Google Scholar 

  • Delseny M, Han B, Hsing YL (2010) High throughput DNA sequencing: the new sequencing revolution. Plant Sci 179:407–422

    Article  PubMed  CAS  Google Scholar 

  • Facchini JP (2001) Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation, and metabolic engineering application. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, Bird DA, St-Pierre B (2004) Can Arabidopsis make complex alkaloids? Trends Plant Sci 9:116–122

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Schoofs G, Wink M (1980) A chloroplast-localized lysine decarboxylase of Lupinus polyphyllus: the first enzyme in the biosynthetic pathway of quinolizidine alkaloids. FEBS Lett 115(1):35–38

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Suzuki H, Yamazaki M, Saito K (2000) Biochemical and partial molecular characterization of bitter and sweet forms of Lupinus angustifolius, an experimental model for study of molecular regulation of quinolizidine alkaloid biosynthesis. Chem Pharm Bull (Tokyo) 48:1458–1461

    Article  CAS  Google Scholar 

  • Joseph PM (2008) Indolizidine and quinolizidine alkaloids. Nat Prod Rep 25:139–165

    Article  Google Scholar 

  • Lee MJ, Pate JS, Harris DJ, Atkins CA (2007) Synthesis, transport and accumulation of quinolizidine alkaloids in Lupinus albus L. and L. angustifolius L. J Exp Bot 58:935–946

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wylie SJ, Jones MGK (2000) Transgenic yellow lupin (Lupinus luteus). Plant Cell Rep 19:634–637

    Article  CAS  Google Scholar 

  • Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21:318–333

    Article  PubMed  CAS  Google Scholar 

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJ (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci U S A 94:8393–8398

    Article  PubMed  CAS  Google Scholar 

  • Mugnier J (1988) Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7:9–12

    Article  Google Scholar 

  • Muzquiz M, Cuadrado C, Ayet G, de la Cuadra C, Burbano C, Osagie A (1994) Variation of alkaloid components of lupin seeds in 49 genotypes of Lupinis albus L. from different countries and locations. J Aric Food Chem 42:1447–1450

    Article  CAS  Google Scholar 

  • Nelson MN, Phan HT, Ellwood SR, Moolhuijzen PM, Hane J, Williams A, O’Lone CE, Fosu-Nyarko J, Scobie M, Cakir M, Jones MG, Bellgard M, Ksiazkiewicz M, Wolko B, Barker SJ, Oliver RP, Cowling WA (2006) The first gene-based map of Lupinus angustifolius L.-location of domestication genes and conserved synteny with Medicago truncatula. Theor Appl Genet 113:225–238

    Article  PubMed  CAS  Google Scholar 

  • Ohmiya S, Saito K, Murakoshi I (1995) Lupine alkaloids. In: Cordell GA (ed) The Alkaloids. Academic Press, London

    Google Scholar 

  • Okada T, Hirai MY, Suzuki H, Yamazaki M, Saito K (2005) Molecular characterization of a novel quinolizidine alkaloid O-tigloyltransferase: cDNA cloning, catalytic activity of recombinant protein and expression analysis in Lupinus plants. Plant Cell Physiol 46:233–244

    Article  PubMed  CAS  Google Scholar 

  • Oram RN (1983) Selection for higher seed yield in the presence of the Deleterious low alkaloid allele Iucundus in Lupinus angustifolius L. Field Crops Res 7:169–180

    Article  Google Scholar 

  • Phan HTT, Ellwood SR, Ford R, Thomas S, Oliver R (2006) Differences in syntenic complexity between Medicago truncatula with Lens culinaris and Lupinus albus. Funct Plant Biol 33:775–782

    Article  CAS  Google Scholar 

  • Phan HT, Ellwood SR, Adhikari K, Nelson MN, Oliver RP (2007) Differences in syntenic complexity between Medicago truncatula with Lens culinaris and Lupinus albus. DNA Res 14:59–70

    Article  PubMed  CAS  Google Scholar 

  • Pigeaire A, Abernethy D, Smith PM, Simpson K, Fletcher N, Lu CY, Atkins CA, Cornish E (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol Breed 3:341–349

    Article  CAS  Google Scholar 

  • Roberts MF, Wink M (1998) Chemical ecology of alkaloids. In: Roberts MF, Wink M (ed) Alkaloids biochemistry, ecology, and medicinal applications. Plenum, New York

    Google Scholar 

  • Saito K, Murakoshi I (1995) Chemistry, biochemistry and chemotaxonomy of lupin alkaloids in the Leguminosae. In: Rahman AU (ed) Studies in natural products chemistry: structure and chemistry (Part C), vol 15. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Saito K, Koike Y, Suzuki H, Murakoshi I (1993a) Biogenic implication of lupin alkaloid biosynthesis in bitter and sweet forms of Lupinus luteus and L. albus. Phytochemistry 34:1041–1044

    Article  CAS  Google Scholar 

  • Saito K, Suzuki H, Takamatsu S, Murakoshi I (1993b) Acyltransferases for lupin alkaloids in Lupinus hirsutus. Phytochemistry 32:87–91

    Article  Google Scholar 

  • Saito K, Yamazaki M, Takamatsu S, Kawaguchi A, Murakoshi I (1989a) Greening induced production of (+)-lupanine in tissue culture of Thermopsis lupinoides. Phytochemistry 28:2341–2344

    Article  CAS  Google Scholar 

  • Saito K, Yamazaki M, Yamakawa K, Fujisawa S, Takamatsu S, Kawaguchi A, Murakoshi I (1989b) Lupin alkaloids in tissue culture of Sophora flavescens var. angustifolius: greening induced production of matrine. Chem Pharm Bull 37:3001–3004

    Article  CAS  Google Scholar 

  • Suzuki H, Koike Y, Murakoshi I, Saito K (1996) Subcellular localization of acyltransferases for quinolizidine alkaloid biosynthesis in Lupinus. Phytochemistry 42:1557–1562

    Article  CAS  Google Scholar 

  • Suzuki H, Murakoshi I, Saito K (1994) A novel O-tigloyltransferase for alkaloid biosynthesis in plants. Purification, characterization, and distribution in Lupinus plants. J Biol Chem 269:15853–15860

    PubMed  CAS  Google Scholar 

  • Tang W, Eisenbrand G (1992) Chinese drugs of plant origin, chemistry, pharmacology, and use in traditional and modern medicine. Springer, Berlin

    Google Scholar 

  • Wink M (1987a) Quinolizidine alkaloids: biochemistry, metabolism, and function in plants and cell suspension cultures. Planta Med 53(6):509–514

    Article  PubMed  CAS  Google Scholar 

  • Wink M (1987b) Why do lupin cell cultures fail to produce alkaloids in large quantities. Plant Cell Tiss Org 8:103–111

    Article  CAS  Google Scholar 

  • Wink M (1990) Physiology of secondary product formation in plants. In: Charlwood BV, Rhodes MJC (eds) Secondary products from plant tissue culture. Clarendon Press, Oxford

    Google Scholar 

  • Wink M (1992) The role of quinolizidine alkaloids in plant insect interactions. In: Bernays EA (ed) Insect-plant interactions, Vol IV. CRC Press, Boca Raton

    Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  PubMed  CAS  Google Scholar 

  • Wink M, Hartmann T (1979) Cadaverine-pyruvate transamination: the principal step of enzymatic quinolizidine alkaloid biosynthesis in Lupinus polyphyllus cell suspension cultures. FEBS Lett 101:343–346

    Article  PubMed  CAS  Google Scholar 

  • Wink M, Hartmann T (1980) Production of quinolizidine alkaloids by photomixotrophic cell suspension cultures: biochemical and biogenetic aspects. Planta Med 40:149–155

    Article  CAS  Google Scholar 

  • Wink M, Hartmann T (1982) Localization of the enzymes of quinolizidine alkaloid biosynthesis in leaf chloroplasts of Lupinus polyphyllus. Plant Physiol 70:74–77

    Article  PubMed  CAS  Google Scholar 

  • Wink M, Mende P (1987) Uptake of lupanine by Alkaloid-storing epidermal cells of Lupinus polyphyllus. Planta Med 53:465–469

    Article  PubMed  CAS  Google Scholar 

  • Wink M, Mohamed GIA (2003) Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem Syst Ecol 31:897–917

    Article  CAS  Google Scholar 

  • Wink M, Roberts MF (1998) Compartmentation of alkaloid synthesis, transport, and storage. In: Roberts MF, Wink M (eds) Alkaloids biochemistry, ecology, and medicinal applications. Plenum, New York

    Google Scholar 

  • Wink M, Witte L (1985) Quinolizidine alkaloids as nitrogen source for lupin seedlings and cell suspension cultures. Z Naturforsch 40c:767–775

    CAS  Google Scholar 

  • Wink M, Meißner C, Witte L (1995) Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 38:139–153

    Article  CAS  Google Scholar 

  • Yamazaki M, Shibata M, Nishiyama Y, Springob K, Kitayama M, Shimada N, Aoki T, Ayabe S, Saito K (2008) Differential gene expression profiles of red and green forms of Perilla frutescens leading to comprehensive identification of anthocyanin biosynthetic genes. FEBS J 275:3494–3502

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bunsupa, S., Saito, K., Yamazaki, M. (2013). Molecular Biology and Biotechnology of Quinolizidine Alkaloid Biosynthesis in Leguminosae Plants. In: Chandra, S., LATA, H., Varma, A. (eds) Biotechnology for Medicinal Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29974-2_11

Download citation

Publish with us

Policies and ethics