Self-Organizing Logistics Process Control: An Agent-Based Approach

  • Jan Ole Berndt
Part of the Communications in Computer and Information Science book series (CCIS, volume 271)


Logistics networks face the contradictory requirements of achieving high operational effectiveness and efficiency while retaining the ability to adapt to a changing environment. Changing customer demands and network participants entering or leaving the system cause these dynamics and hamper the collection of information which is necessary for efficient process control. Decentralized approaches representing logistics entities by autonomous artificial agents help coping with these challenges. Coordination of these agents is a fundamental task which has to be addressed in order to enable successful logistics operations. This paper presents a novel approach to self-organization for multiagent system coordination. The approach avoids a priori assumptions regarding agent characteristics by generating expectations solely based on observable behavior. It is formalized, implemented, and applied to a logistics network scenario. An empirical evaluation shows its ability to approximate optimal supply network configurations in logistics agent coordination.


Customer Satisfaction Multiagent System Supply Network Logistics Network Business Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brauer, W., Nickles, M., Rovatsos, M., Weiss, G., Lorentzen, K.F.: Expectation-Oriented Analysis and Design. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 226–244. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Collins, J., Youngdahl, B., Jamison, S., Mobasher, B., Gini, M.: A Market Architecture for Multi-Agent Contracting. In: Agents 1998, pp. 285–292. ACM Press, Saint Paul (1998)CrossRefGoogle Scholar
  3. 3.
    Dittrich, P., Kron, T., Banzhaf, W.: On the Scalability of Social Order: Modeling the Problem of Double and Multi Contingency Following Luhmann. JASSS 6(1) (2003)Google Scholar
  4. 4.
    Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication language. In: Adam, N.R., Bhargava, B.K., Yesha, Y. (eds.) CIKM 1994, pp. 456–463. ACM, New York (1994)CrossRefGoogle Scholar
  5. 5.
    Foundation for Intelligent Physical Agents: FIPA Agent Communication Language Specifications. Standard (2002)Google Scholar
  6. 6.
    Foundation for Intelligent Physical Agents: FIPA Request Interaction Protocol Specification. Standard (2002), document No. SC00026HGoogle Scholar
  7. 7.
    Horling, B., Lesser, V.: A Survey of Multi-Agent Organizational Paradigms. Know. Eng. Rev. 19(4), 281–316 (2005)CrossRefGoogle Scholar
  8. 8.
    Horling, B., Mailler, R., Lesser, V.: A Case Study of Organizational Effects in a Distributed Sensor Network. In: Sonenberg, L., Sierra, C. (eds.) AAMAS 2004, pp. 1294–1295. IEEE Computer Society, New York (2004)Google Scholar
  9. 9.
    Hülsmann, M., Scholz-Reiter, B., Austerschulte, L., Wycisk, C., de Beer, C.: Autonomous Cooperation – A Way to Cope with Critical Incidents in International Supply Networks (ISN)? An Analysis of Complex Adaptive Logistic Systems (CALS) and their Robustness. In: 24th EGOS Colloquium, Vrije Universiteit Amsterdam (2008)Google Scholar
  10. 10.
    Hülsmann, M., Scholz-Reiter, B., Freitag, M., Wycisk, C., De Beer, C.: Autonomous Cooperation as a Method to cope with Complexity and Dynamics? – A Simulation based Analyses and Measurement Concept Approach. In: Bar-Yam, Y. (ed.) ICCS 2006, Boston (2006)Google Scholar
  11. 11.
    Luhmann, N.: Social Systems. Stanford University Press, Stanford (1995)Google Scholar
  12. 12.
    Montgomery, T.A., Durfee, E.H.: Search Reduction in Hierarchical Distributed Problem Solving. Group Decis. Negot. 2, 301–317 (1993)CrossRefGoogle Scholar
  13. 13.
    Nickles, M., Rovatsos, M., Weiss, G.: Expectation-oriented modeling. Eng. Appl. Artif. Intel. 18(8), 891–918 (2005)CrossRefGoogle Scholar
  14. 14.
    Nickles, M., Weiss, G.: Multiagent Systems Without Agents – Mirror-Holons for the Compilation and Enactment of Communication Structures. In: Fischer, K., Florian, M., Malsch, T. (eds.) Socionics. LNCS (LNAI), vol. 3413, pp. 263–288. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Parsons, T., Shils, E. (eds.): Toward a General Theory of Action. Harvard University Press, Cambridge (1951)Google Scholar
  16. 16.
    Schillo, M., Spresny, D.: Organization: The Central Concept for Qualitative and Quantitative Scalability. In: Fischer, K., Florian, M., Malsch, T. (eds.) Socionics. LNCS (LNAI), vol. 3413, pp. 84–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Schuldt, A.: Multiagent Coordination Enabling Autonomous Logistics. Doctoral dissertation, Universität Bremen (2010)Google Scholar
  18. 18.
    Schuldt, A.: Team Formation for Agent Cooperation in Logistics: Protocol Design and Complexity Analysis. In: Filipe, J., Fred, A. (eds.) ICAART 2011, pp. 398–405. SciTePress, Rome (2011)Google Scholar
  19. 19.
    Schuldt, A., Berndt, J.O., Herzog, O.: The Interaction Effort in Autonomous Logistics Processes: Potential and Limitations for Cooperation. In: Hülsmann, M., Scholz-Reiter, B., Windt, K. (eds.) Autonomous Cooperation and Control in Logistics. Springer, Heidelberg (to appear)Google Scholar
  20. 20.
    Schuldt, A., Gehrke, J.D., Werner, S.: Designing a Simulation Middleware for FIPA Multiagent Systems. In: Jain, L., Gini, M., Faltings, B.B., Terano, T., Zhang, C., Cercone, N., Cao, L. (eds.) WI-IAT 2008, pp. 109–113. IEEE Computer Society Press, Sydney (2008)Google Scholar
  21. 21.
    Tambe, M.: Towards Flexible Teamwork. J. Artif. Intell. Res. 7, 83–124 (1997)Google Scholar
  22. 22.
    Wooldridge, M., Jennings, N.R.: The Cooperative Problem-solving Process. J. Logic Comput. 9(4), 563–592 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jan Ole Berndt
    • 1
  1. 1.Center for Computing and Communication Technologies (TZI)Universität BremenBremenGermany

Personalised recommendations