Advertisement

Location Privacy in Relation to Trusted Peers

  • Klaus Rechert
  • Benjamin Greschbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7170)

Abstract

One common assumption when defining location privacy metrics is that one is dealing with attackers who have the objective of re-identifying an individual out of an anonymized data set. However, in today’s communication scenarios, user communication and information exchange with (partially) trusted peers is very common, e.g., in communication via social applications. When disclosing voluntarily a single observation to a (partially) trusted communication peer, the user’s privacy seems to be unharmed. However, location data is able to transport much more information than the simple fact of a user being at a specific location. Hence, a user-centric privacy metric is required in order to measure the extent of exposure by releasing (a set of) location observations. The goal of such a metric is to enable individuals to estimate the privacy loss caused by disclosing further location information in a specific communication scenario and thus enabling the user to make informed choices, e.g., choose the right protection mechanism.

Keywords

Location Information Information Gain Location Privacy Location Observation Adversary Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Westin, A.F.: Privacy and Freedom, 1st edn., Atheneum, New York (1967)Google Scholar
  2. 2.
    Duckham, M., Kulik, L.: Location privacy and location-aware computing, pp. 35–51. CRC Press, Boca Rator (2006)Google Scholar
  3. 3.
    Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Achieving guaranteed anonymity in gps traces via uncertainty-aware path cloaking. IEEE Transactions on Mobile Computing 9(8), 1089–1107 (2010)CrossRefGoogle Scholar
  4. 4.
    Shokri, R., Freudiger, J., Jadliwala, M., Hubaux, J.P.: A distortion-based metric for location privacy. In: WPES 2009: Proceedings of the 8th ACM workshop on Privacy in the Electronic Society, pp. 21–30. ACM, New York (2009)CrossRefGoogle Scholar
  5. 5.
    Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: MobiSys 2003: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, pp. 31–42. ACM, New York (2003)CrossRefGoogle Scholar
  7. 7.
    Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity: Architecture and algorithms. IEEE Transactions on Mobile Computing 7(1), 1–18 (2008)CrossRefGoogle Scholar
  8. 8.
    Liu, L.: Privacy and location anonymization in location-based services. SIGSPATIAL Special 1, 15–22 (2009)CrossRefGoogle Scholar
  9. 9.
    Bettini, C., Wang, X.S., Jajodia, S.: Protecting Privacy Against Location-Based Personal Identification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674, pp. 185–199. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Beresford, A., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Computing 2(1), 46–55 (2003)CrossRefGoogle Scholar
  11. 11.
    Cranshaw, J., Toch, E., Hong, J., Kittur, A., Sadeh, N.: Bridging the gap between physical location and online social networks. In: Ubicomp 2010: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 119–128. ACM, New York (2010)CrossRefGoogle Scholar
  12. 12.
    Toch, E., Cranshaw, J., Drielsma, P.H., Tsai, J.Y., Kelley, P.G., Springfield, J., Cranor, L., Hong, J., Sadeh, N.: Empirical models of privacy in location sharing. In: Ubicomp 2010: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 129–138. ACM, New York (2010)CrossRefGoogle Scholar
  13. 13.
    Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards Measuring Anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Kamiyama, K., Ngoc, T.H., Echizen, I., Yoshiura, H.: Measuring Accumulated Revelations of Private Information by Multiple Media. In: Cellary, W., Estevez, E. (eds.) Software Services for e-World. IFIP AICT, vol. 341, pp. 70–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Golle, P., Partridge, K.: On the Anonymity of Home/Work Location Pairs. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 390–397. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Ma, C.Y., Yau, D.K., Yip, N.K., Rao, N.S.: Privacy vulnerability of published anonymous mobility traces. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, MobiCom 2010, pp. 185–196. ACM, New York (2010)CrossRefGoogle Scholar
  17. 17.
    Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)CrossRefGoogle Scholar
  18. 18.
    Bayir, M., Demirbas, M., Eagle, N.: Discovering spatiotemporal mobility profiles of cellphone users. In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops, WoWMoM 2009, pp. 1–9 (2009)Google Scholar
  19. 19.
    Ashbrook, D., Starner, T.: Using gps to learn significant locations and predict movement across multiple users. Personal Ubiquitous Comput. 7, 275–286 (2003)CrossRefGoogle Scholar
  20. 20.
    Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Klaus Rechert
    • 1
  • Benjamin Greschbach
    • 2
  1. 1.Faculty of EngineeringAlbert-Ludwigs UniversityFreiburg i. B.Germany
  2. 2.School of Computer Science and CommunicationKTH - Royal Institute of TechnologyStockholmSweden

Personalised recommendations