Vibration of the Tools and Workpieces

  • Etele Csanády
  • Endre Magoss
Chapter

Abstract

Due to the elastic support and elastic nature of wood, the machine, the tool and the workpiece generally create vibration systems. The natural frequency and the deflection of the free vibration will be determined by the mass and the spring constant of the support. The more rigid the vibration system is, the smaller the deflections will be.

Keywords

Vibration Amplitude Critical Speed Torsional Vibration Feed Speed Exciting Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ulsoy, A., Mote, C.: Analysis of bandsaw vibration. J. Wood Sci. 1, 1–10 (1980)Google Scholar
  2. 2.
    Wu, W., Mote, C.: Analysis of vibration in bandsaw system. For. Prod. J. Sept. 34(9), 12–21 (1984)Google Scholar
  3. 3.
    Mote, C., Szymani, R.: Principal developments in circular saw vibration. Holz als Roh- und Werkstoff, pp. 189–196 and 219-225 (1977)Google Scholar
  4. 4.
    Лапин, Л.: Определение допустимого числа оборотов круглых пил.(Determination of allowable speed of circular saws.) Лесной Журнал (2), pp. 125–135 (1959)Google Scholar
  5. 5.
    Стахиев, Ю.: Работоспособностъ плоских круглых пил.(Working capacity of circular saws.) М.: Изд. Лесная Пром. p. 384 c (1989)Google Scholar
  6. 6.
    Стахиев, Ю.: Устойчивость и колебание плоских круглых пил (Stability and vibration of circular saws). Изд. Лесная Пром., (1977)Google Scholar
  7. 7.
    Gogu, G.: Elastic stability and vibration on circular saws. In: Proceedings of 13th IWMS Vancouver, pp. 181–192 (1997)Google Scholar
  8. 8.
    Pahlitsch, G., Friebe E.: Über das Vorspannen von Kreissägeblättern. Holz als Roh- und Werkstoff, pp. 429–436 und 457–463 (1973)Google Scholar
  9. 9.
    Stakhiev, Y.M.: Research on circular saw vibration in Russia: from theory and experiment to the needs of industry. Holz als Roh Werkstoff 56(2), 131–137 (1998)CrossRefGoogle Scholar
  10. 10.
    McKenzie, W.: The effects of slots on critical rim temperature. Wood Science, vol. 4, pp. 304–311 (1973)Google Scholar
  11. 11.
    Satoru, N.: Stable sawblade. In: Proceedings of 17th IWMS Rosenheim, pp. 418–420 (2005)Google Scholar
  12. 12.
    Lister, P et al.: Experimental sawing performance results for super critical speed circular saws. In: Proceedings of 13th IWMS Vancouver, pp. 129–147 (1997)Google Scholar
  13. 13.
    Satoru, N.: Hyper critical sawblade. In: Proceedings of 16th IWMS Matsue, pp. 225–233 (2003)Google Scholar
  14. 14.
    Okay, R et al.: (1995) What is relationship between tooth passage frequency and natural frequency of the bandsaw when wasboarding induced. In: Proceedings of 12th IWMS Kyoto, pp. 267–380 (1995)Google Scholar
  15. 15.
    Lehmann, B., Hutton, S.: The kinematics of wasboarding of bandsaws and circular saws. In: Proceedings of 13th IWMS Vancouver, pp. 205–216 (1997)Google Scholar
  16. 16.
    Orlowski, K., Wasielewski, R.: Washboarding during cutting on frame sawing machines. In: Proceedings of 15th IWMS Los Angeles, pp. 219–228 (2001)Google Scholar
  17. 17.
    Sitkei, G., et al.: Theorie des Spanens von Holz. Fortschrittbericht No.1 Acta Fac. Ligniensis Sopron (1990)Google Scholar
  18. 18.
    Csanády, E., Németh, S.Z.: Investigation of clamping on CNC router. In: Proceedings of 17th IWMS Rosenheim, pp. 456–471 (2005)Google Scholar
  19. 19.
    Dobrindt, P.: Optimiertes Schleifen von MDF—und Spanplatten. In: Workshop Tagungsband, 8.Holztechn. Koll. Braunschweig, S. S. 125–136 (1991) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Etele Csanády
    • 1
  • Endre Magoss
    • 1
  1. 1.Department of Wood EngineeringUniversity of West-Hungary SopronSopronHungary

Personalised recommendations