Multiple Usage of Random Bits in Finite Automata

  • Rūsiņš Freivalds
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7287)


Finite automata with random bits written on a separate 2-way readable tape can recognize languages not recognizable by probabilistic finite automata. This shows that repeated reading of random bits by finite automata can have big advantages over one-time reading of random bits.


Random Sequence Turing Machine Multiple Usage Finite Automaton Kolmogorov Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. Journal of Computer and System Sciences 36(2), 254–276 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barzdin, J.M.: On a Class of Turing Machines (Minsky Machines). Algebra i Logika 3(1) (1963) (Russian); Review in the Journal of Symbolic Logic 32(4), 523–524 (1967) Google Scholar
  3. 3.
    Calude, C.S., Staiger, L.: Generalisations of disjunctive sequences. Mathematical Logic Quarterly 51(2), 120–128 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dwork, C., Stockmeyer, L.: Finite state verifiers I: the power of interaction. Journal of the Association for Computing Machinery 39(4), 800–828 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R. (ed.) SIAM-AMS Proceedings of the Complexity of Computation, vol. 7, pp. 27–41 (1974)Google Scholar
  6. 6.
    Freivalds, R.: Probabilistic machines can use less running time. In: Gilchrist, B. (ed.) Information Processing 1977, Proceedings of IFIP Congress 1977, pp. 839–842. North-Holland, Amsterdam (1977)Google Scholar
  7. 7.
    Freivalds, R.: Probabilistic Two-way Machines. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  8. 8.
    Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 565–613. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  9. 9.
    Freivalds, R.: Non-constructive methods for finite probabilistic automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Freivalds, R.: Amount of nonconstructivity in finite automata. Theoretical Computer Science 411(38-39), 3436–3443 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge complexity of interactive proof-systems. In: Proceedings of ACM STOC 1985, pp. 291–304 (1985)Google Scholar
  12. 12.
    Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof systems. In: Proceedings of ACM STOC 1986, pp. 58–68 (1986)Google Scholar
  13. 13.
    Immerman, N.: Descriptive Complexity, pp. 113–119. Springer, New York (1999)zbMATHGoogle Scholar
  14. 14.
    Jürgensen, H., Thierrin, G.: On ω-Languages whose syntactic monoid is trivial. International Journal of Parallel Programming 12(5), 359–365 (1983)zbMATHGoogle Scholar
  15. 15.
    Karp, R.M., Lipton, R.: Turing machines that take advice. L’ Enseignement Mathematique 28, 191–209 (1982)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)MathSciNetGoogle Scholar
  17. 17.
    Levin, L.A.: On the notion of a random sequence. Soviet Mathematics Doklady 14, 1413–1416 (1973)zbMATHGoogle Scholar
  18. 18.
    Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer (1997)Google Scholar
  20. 20.
    Newman, I.: Private vs. common random bits in communication complexity. Information Processing Letters 39, 67–71 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nishimura, H., Yamakami, T.: Polynomial time quantum computation with advice. Information Processing Letters 90(4), 195–204 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–245 (1963)CrossRefGoogle Scholar
  23. 23.
    Schnorr, C.-P.: A unified approach to the definition of random sequences. Mathematical Systems Theory 5(3), 246–258 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schnorr, C.-P.: Process complexity and effective random tests. Journal of Computer and System Sciences 7(4), 376–388 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Shannon, C.: Communication theory of secrecy systems. Bell System Technical Journal 28(4), 656–715 (1949)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing machines. Theoretical Computer Science 411(1), 22–43 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yamakami, T.: The Roles of Advice to One-Tape Linear-time Turing machines and finite automata. International Journal of Foundations of Computer Science 21(6), 941–962 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rūsiņš Freivalds
    • 1
  1. 1.Institute of Mathematics and Computer ScienceUniversity of LatviaRīgaLatvia

Personalised recommendations