Skip to main content

Computing in the Fractal Cloud: Modular Generic Solvers for SAT and Q-SAT Variants

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7287))

Abstract

Abstract geometrical computation can solve hard combinatorial problems efficiently: we showed previously how Q-SAT —the satisfiability problem of quantified boolean formulae— can be solved in bounded space and time using instance-specific signal machines and fractal parallelization. In this article, we propose an approach for constructing a particular generic machine for the same task. This machine deploys the Map/Reduce paradigm over a discrete fractal structure. Moreover our approach is modular: the machine is constructed by combining modules. In this manner, we can easily create generic machines for solving satifiability variants, such as SAT, #SAT, MAX-SAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: NP-complete problems and physical reality. SIGACT News 36(1), 30–52 (2005)

    Article  Google Scholar 

  2. Asarin, E., Maler, O.: Achilles and the Tortoise Climbing up the Arithmetical Hierarchy. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 471–483. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  3. Cook, M.: Universality in elementary cellular automata. Compl. Syst. 15(1), 1–40 (2004)

    MATH  Google Scholar 

  4. Cook, S.: The complexity of theorem proving procedures. In: 3rd Symp. on Theory of Computing (STOC 1971), pp. 151–158. ACM (1971)

    Google Scholar 

  5. Dean, J., Ghemawat, S.: Map/Reduce: simplified data processing on large clusters. In: 6th Symp. on Operating Systems Design & Implementation (OSDI 2004). USENIX Association (2004)

    Google Scholar 

  6. Duchier, D., Durand-Lose, J., Senot, M.: Fractal Parallelism: Solving SAT in Bounded Space and Time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 279–290. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Duchier, D., Durand-Lose, J., Senot, M.: Massively parallel automata in Euclidean space-time. In: IEEE 4th Int. Conf. on Self-Adaptive and Self-Organizing Systems Workshops (SASOW 2010), pp. 104–109. IEEE Computer Society (2010)

    Google Scholar 

  8. Duchier, D., Durand-Lose, J., Senot, M.: Computing in the fractal cloud: modular generic solvers for SAT and Q-SAT variants (extended version). Arxiv preprint arXiv:1105.3454 (2011), http://arxiv.org/abs/1105.3454

  9. Durand-Lose, J.: Forecasting Black Holes in Abstract Geometrical Computation is Highly Unpredictable. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 644–653. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Durand-Lose, J.: Abstract Geometrical Computation and Computable Analysis. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 158–167. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Durand-Lose, J.: Abstract geometrical computation 4: small Turing universal signal machines. Theoret. Comp. Sci. 412, 57–67 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fischer, P.: Generation of primes by a one-dimensional real-time iterative array. Jour. ACM 12(3), 388–394 (1965)

    Article  MATH  Google Scholar 

  13. Goliaei, S., Jalili, S.: An optical solution to the 3-SAT problem using wavelength based selectors. The Journal of Supercomputing, 1–10 (2010)

    Google Scholar 

  14. Huckenbeck, U.: Euclidian geometry in terms of automata theory. Theoret. Comp. Sci. 68(1), 71–87 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jacopini, G., Sontacchi, G.: Reversible parallel computation: an evolving space-model. Theoret. Comp. Sci. 73(1), 1–46 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jeandel, E., Vanier, P.: \(\it \Pi^0_1\) Sets and Tilings. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 230–239. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Mackie, I.: A Visual Model of Computation. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 350–360. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Margenstern, M., Morita, K.: NP problems are tractable in the space of cellular automata in the hyperbolic plane. Theoret. Comp. Sci. 259(1-2), 99–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Naughton, T., Woods, D.: An optical model of computation. Theoret. Comput. Sci. 334(1-3), 227–258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Păun, G.: P-systems with active membranes: Attacking NP-Complete problems. Jour. of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

    MATH  Google Scholar 

  21. Stockmeyer, L., Meyer, A.: Word problems requiring exponential time. In: 5th ACM Symp. on Theory of Computing (STOC 1973), vol. 16, pp. 1–9 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duchier, D., Durand-Lose, J., Senot, M. (2012). Computing in the Fractal Cloud: Modular Generic Solvers for SAT and Q-SAT Variants. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29952-0_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29951-3

  • Online ISBN: 978-3-642-29952-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics