Finite Automata over Structures

(Extended Abstract)
  • Aniruddh Gandhi
  • Bakhadyr Khoussainov
  • Jiamou Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7287)


We introduce a finite automata model for performing computations over an arbitrary structure \(\mathcal S\). The automaton processes sequences of elements in \(\mathcal S\). While processing the sequence, the automaton tests atomic relations, performs atomic operations of the structure \(\mathcal S\), and makes state transitions. In this setting, we study several problems such as closure properties, validation problem and emptiness problems. We investigate the dependence of deciding these problems on the underlying structures and the number of registers of our model of automata. Our investigation demonstrates that some of these properties are related to the existential first order fragments of the underlying structures.


Regular Language Finite Automaton Validation Problem Atomic Operation Atomic Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Černý, P., Weinstein, S.: Algorithmic Analysis of Array-Accessing Programs. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 86–101. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Blum, L., Shub, M., Smale, S.: On a Theory of Computation and Complexity over the Real Numbers: NP-completeness, Recursive Functions and Universal Machines. Bulletin of the American Mathematical Society 21(1), 1–46 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-Variable Logic on Words with Data. In: Proceedings of LICS 2006, pp. 7–16. IEEE Computer Society (2006)Google Scholar
  4. 4.
    Bojanczyk, M., David, C., Muscholl, M., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and XML reasoning. In: Proceedings of PODS 2006, pp. 10–19. ACM (2006)Google Scholar
  5. 5.
    Bournez, O., Cucker, F., Jacobé de Naurois, P., Marion, J.-Y.: Computability over an Arbitrary Structure. Sequential and Parallel Polynomial Time. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 185–199. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bozga, M., Iosif, R., Lakhnech, Y.: Flat Parametric Counter Automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 577–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Comon, S., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Presburger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Ershov, Y., Goncharov, S., Marek, V., Nerode, A., Remmel, J.: Handbook of Recursive Mathematics: Recursive Model Theory. Studies in Logic and the Foundations of Mathematics. North-Holland (1998)Google Scholar
  9. 9.
    Figueira, D.: Reasoning on words and trees with data. Ph.D. Thesis, ENS Cachan, France (2010)Google Scholar
  10. 10.
    Ibarra, O.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kaminsky, M., Francez, N.: Finite memory automata. Theor. Comp. Sci. 134(2), 329–363 (1994)CrossRefGoogle Scholar
  12. 12.
    Ishihara, H., Khousainov, B., Rubin, S.: Some Results on Automatic Structures. In: Proceedings of LICS 2002, p. 235. IEEE Computer Society (2002)Google Scholar
  13. 13.
    Leroux, J.: The general vector addition system reachability problem by presburger inductive invariants. In: Procedings of LICS 2009, pp. 4–13. IEEE Computer Society (2009)Google Scholar
  14. 14.
    Leroux, J., Sutre, G.: Flat Counter Automata Almost Everywhere! In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Matiyasevich, Y.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)Google Scholar
  16. 16.
    Minsky, M.: Recursive unsolvability of Post’s problem of “Tag” and other topics in theory of Turing machines. Annals of Math. 74(3) (1961)Google Scholar
  17. 17.
    Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Tran. Comput. Logic 15(3), 403–435 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Point, F.: On Decidable Extensions of Presburger Arithmetic: From A. Bertrand Numeration Systems to Pisot Numbers. J. Symb. Log. 65(3), 1347–1374 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Segoufin, L., Torunczyk, S.: Automata based verification over linearly ordered data domains. In: Proceedings of STACS 2011. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 81–92 (2011)Google Scholar
  21. 21.
    Tan, T.: Graph reachability and pebble automata over infinite alphabets. In: Proceedings of LICS 2009, pp. 157–166. IEEE Computer Society (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aniruddh Gandhi
    • 1
  • Bakhadyr Khoussainov
    • 1
  • Jiamou Liu
    • 2
  1. 1.Department of Computer ScienceUniversity of AucklandNew Zealand
  2. 2.School of Computing and Mathematical SciencesAuckland University of TechnologyNew Zealand

Personalised recommendations