Advertisement

Electron Tomography and Multiscale Biology

  • Albert F. Lawrence
  • Séastien Phan
  • Mark Ellisman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7287)

Abstract

Electron tomography (ET) is an emerging technology for the three dimensional imaging of cellular ultrastructure. In combination with other techniques, it can provide three dimensional reconstructions of protein assemblies, correlate 3D structures with functional investigations at the light microscope level and provide structural information which extends the findings of genomics and molecular biology.

Realistic physical details are essential for the task of modeling over many spatial scales. While the electron microscope resolution can be as low as a fraction of a nm, a typical 3D reconstruction may just cover 1/1015 of the volume of an optical microscope reconstruction. In order to bridge the gap between those two approaches, the available spatial range of an ET reconstruction has been expanded by various techniques. Large sensor arrays and wide-field camera assemblies have increased the field dimensions by a factor of ten over the past decade, and new techniques for serial tomography and montaging make possible the assembly of many three-dimensional reconstructions.

The number of tomographic volumes necessary to incorporate an average cell down to the protein assembly level is of the order 104, and given the imaging and algorithm requirements, the computational problem lays well in the exascale range. Tomographic reconstruction can be made parallel to a very high degree, and their associated algorithms can be mapped to the simplified processors comprising, for example, a graphics processor unit. Programming this on a GPU board yields a large speedup, but we expect that many more orders of magnitude improvement in computational capabilities will still be required in the coming decade. Exascale computing will raise a new set of problems, associated with component energy requirements (cost per operation and costs of data transfer) and heat dissipation issues. As energy per operation is driven down, reliability decreases, which in turn raises difficult problems in validation of computer models (is the algorithmic approach faithful to physical reality), and verification of codes (is the computation reliably correct and replicable). Leaving aside the hardware issues, many of these problems will require new mathematical and algorithmic approaches, including, potentially, a re-evaluation of the Turing model of computation.

Keywords

Electron Tomography Surface Patch Tomographic Reconstruction Bundle Adjustment Fourier Integral Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amat, F., Moussavi, F., Comolli, L.R., Elidan, G., Downing, K.H., Horowitz, M.: Markov random field based automatic image alignment for electron tomography. Journal of Structural Biology 131, 260–275 (2008)CrossRefGoogle Scholar
  2. Beylkin, G.: The inversion problem and applications of the generalized radon transform. Communications on Pure and Applied Mathematics 37(5), 579–599 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Brand, M., Kang, K., Cooper, D.B.: Algebraic solution for the visual hull. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, pp. I–30–I–35 (2004)Google Scholar
  4. Cao, M., Zhang, H.B., Lu, Y., Nishi, R., Takaoka, A.: Formation and reduction of streak artefacts in electron tomography. Journal of Microscopy 239(1), 66–71 (2010)Google Scholar
  5. Cardone, G., Grünewald, K., Steven, A.C.: A resolution criterion for electron tomography based on cross-validation. Journal of Structural Biology 151(2), 117–129 (2005) ISSN 1047-8477CrossRefGoogle Scholar
  6. De Knock, B., De Schepper, N., Sommen, F.: Curved radon transforms and factorization of the veronese equations in clifford analysis. Complex Variables and Elliptic Equations 51(5-6), 511–545 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Denk, W., Horstmann, H.: Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2(11), e329 (2004)CrossRefGoogle Scholar
  8. Duistermaat, J.J., Guillemin, V.W., Hörmander, L., Brüning, J.: Mathematics Past and Present: Fourier Integral Operators: Selected Classical Articles. Springer (1994)Google Scholar
  9. Ehrenpreis, L.: The universality of the Radon transform. Clarendon Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  10. Frank, J.: Electron Tomography, 2nd edn. Plenum Publishing Corporation, New York (2006)CrossRefGoogle Scholar
  11. Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., Sosinsky, G.E., Tsien, R.Y., Ellisman, M.H.: Multicolor and electron microscopic imaging of connexin trafficking. Science 296(5567), 503–517 (2002)CrossRefGoogle Scholar
  12. Gelfand, I.M., Gindikin, S.G., Graev, M.I.: Selected Topics in Integral Geometry. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  13. Goldman, R.D., Grin, B., Mendez, M.G., Kuczmarski, E.R.: Intermediate filaments: versatile building blocks of cell structure. Curr. Opin. Cell Biol. 20(1), 28–34 (2008)CrossRefGoogle Scholar
  14. Greenleaf, A., Seeger, A.: Oscillatory and fourier integral operators with degenerate canonical relations, pp. 93–141. Publicacions Matematiques (2002)Google Scholar
  15. Guillemin, V.: On some results of gelfand in integral geometry. In: Proc. Symp. Pure Math., vol. 43, pp. 149–155 (1985)Google Scholar
  16. Hawkes, P.W.: Recent advances in electron optics and electron microscopy. Annales de la Foundation Louis de Broglie 29, 837–855 (2004)Google Scholar
  17. Heintzmann, R., Ficz, G.: Breaking the resolution limit in light microscopy. Methods Cell Biol. 81, 561–580 (2007)CrossRefGoogle Scholar
  18. Helgason, S.: The Radon transform, 2nd edn. Progress in mathematics, vol. 5. Birkhäuser, Boston (1999)zbMATHGoogle Scholar
  19. Heyden, A., Åström, K.: Euclidean reconstruction from almost uncalibrated cameras. In: Proceedings SSAB 1997 Swedish Symposium on Image Analysis, pp. 16–20. Swedish Society for Automated Image Analysis (1997)Google Scholar
  20. Hörmander, L.: The analysis of linear partial differential operators. In: The Analysis of Linear Partial Differential Operators. Springer, New York (1990)Google Scholar
  21. Institute For Computing in Science. In: Park city Workshop (2011), www.icis.anl.gov/programs/
  22. Lawrence, A., Bouwer, J.C., Perkins, G., Ellisman, M.H.: Transform-based backprojection for volume reconstruction of large format electron microscope tilt series. Journal of Structural Biology 154, 144–167 (2006)CrossRefGoogle Scholar
  23. Liang, C., Wong, K.-Y.K.: Robust recovery of shapes with unknown topology from the dual space. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12), 2205–2216 (2007)CrossRefGoogle Scholar
  24. Machleidt, T., Robers, M., Hanson, G.T.: Protein labeling with flash and reash. Methods Mol. Biol. 356, 209–220 (2007)Google Scholar
  25. Martone, M.E., Gupta, A., Wong, M., Qian, X., Sosinsky, G., Ludäscher, B., Ellisman, M.H.: A cell-centered database for electron tomographic data. Journal of Structural Biology 138(1-2), 145–155 (2002)CrossRefGoogle Scholar
  26. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)CrossRefzbMATHGoogle Scholar
  27. Palamodov, V.P.: Reconstructive integral geometry. Birkhäuser Verlag, Boston (2004)CrossRefzbMATHGoogle Scholar
  28. Palamodov, V.P.: A uniform reconstruction formula in integral geometry. arXiv:1111.6514v1 (2011)Google Scholar
  29. Phan, S., Lawrence, A.: Tomography of large format electron microscope tilt series: Image alignment and volume reconstr uction. In: CISP 2008: Congress on Image and Signal Processing, vol. 2, pp. 176–182 (May 2008)Google Scholar
  30. Phan, S., Lawrence, A., Molina, T., Lanman, J., Berlanga, M., Terada, M., Kulungowski, A., Obayashi, J., Ellisman, M.: Txbr montage reconstruction (submitted, 2012)Google Scholar
  31. Quinto, E.T.: The dependence of the generalized radon transform on defining measures. Transactions of the American Mathematical Society 257(2), 331–346 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Quinto, E.T.: Topological restrictions on double fibrations and radon transforms. Proceedings of the American Mathematical Society 81(4), 570–574 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Quinto, E.T.: Radon transforms, differential equations and microlocal analysis. Contemporary Mathematics 278, 57–68 (2001)MathSciNetCrossRefGoogle Scholar
  34. Reimer, L., Kohl, H.: Transmission electron microscopy: physics of image formation. Springer (2008)Google Scholar
  35. Shaner, N.C., Steinbach, P.A., Tsien, R.Y.: A guide to choosing fluorescent proteins. Nat Methods 2(12), 905–909 (2005)CrossRefGoogle Scholar
  36. Sharafutdinof, V.A.: Ray Transforms on Riemannian Manifolds. Lecture Notes. University of Washington, Seattle (1999)Google Scholar
  37. Wolf, L., Guttmann, M.: Artificial complex cells via the tropical semiring. In: CVPR (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Albert F. Lawrence
    • 1
  • Séastien Phan
    • 1
  • Mark Ellisman
    • 1
  1. 1.National Center for Microscopy and Imaging ResearchUniversity of CaliforniaSan DiegoUSA

Personalised recommendations