Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 504 Accesses

Abstract

In this chapter I will discuss the leptonic part of CRs: electrons and positrons. This component has been matter of debate because—as I pointed out in the introduction—from recent measurements very interesting signs of either new astrophysical sources or even new physics came out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the latest talks by A.W. Strong (http://www.mpe.mpg.de/~aws/talks.html).

  2. 2.

    ATIC does not have a magnet and therefore is not able to discriminate between electrons and positrons.

  3. 3.

    A neutron star is the final stage in the evolution of a massive star: the life cycle of stars more massive than \(8\text{--} 10\) solar masses ends with a Supernova Explosion; the shock wave continues to propagate in the interstellar medium forming a Supernova Remnant and accelerating Cosmic Rays, while a compact object with very high density made of neutrons remains.

  4. 4.

    \({ \Lambda \rm CDM}\) stands for Lambda-Cold Dark Matter; \(\Lambda \) is the cosmological constant: is an important ingredient of the model since it allows an accelerated expansion of the Universe at present time; Cold Dark Matter is supposed to be the most important part of the matter content of the Universe: Cold means that it decoupled in non-relativistic regime.

  5. 5.

    see http://www.mpa-garching.mpg.de/millennium/.

  6. 6.

    see http://www.sdss.org/.

  7. 7.

    R-parity is a symmetry acting on the Minimal Supersymmetric Standard Model (MSSM) fields; all Standard Model particles have positive R-parity while supersymmetric particles have negative R-parity. So, if R-parity is conserved, a supersymmpetric particle cannot decay into a set of SM particles: for this reason the lightest supersymmetric particle (LSP) must be stable.

  8. 8.

    The measure refers to electrons+positrons since Fermi-LAT does not have a magnet and therefore is not able to distinguish between negative and positive particle, although recently a very interesting method based on the Earth magnetic field permitted to obtain the two spectra seprately: I will mention it at the end of the chapter.

  9. 9.

    Via Lactea simulation follows the growth of a Milky Way-size system in a \({\Lambda \rm CDM}\) Universe from redshift 104.3 to the present. The galaxy-forming region is sampled with \({\sim } 10^9\) particles of mass \({\sim } 4\) times the Solar mass. The simulation reveals the fractal nature of Dark Matter clustering: isolated halos and subhalos contain the same relative amount of substructure and both have cuspy inner density profiles.

  10. 10.

    In that paper the authors follow a similar approach and find that, for reasonable assumptions on the parameter of both local and distant sources, the current observations can be reproduced by a smooth distant contribution plus a collection of local pulsars and SNRs with no need for exotic contributions: such a finding is similar to our result. Moreover, they investigate the systematic uncertainties that turn out to be high: in particular, the spectral shape at high energy appears to be weakly correlated with the spectral indices of local sources, but more strongly with the hierarchy in their distance, age and power.

References

  1. T.A. Porter, A.W. Strong, A new estimate of the Galactic interstellar radiation field between 0.1 um and 1000 um, in International Cosmic Ray Conference, vol. 4 (2005), p. 77

    Google Scholar 

  2. S.V. Bulanov, V.A. Dogel, The influence of the energy dependence of the diffusion coefficient on the spectrum of the electron component of cosmic rays and the radio background radiation of the galaxy. Astrophys. Space Sci. 29, 305–318 (1974)

    Article  ADS  Google Scholar 

  3. O. Adriani et al. [PAMELA collaboration], An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607–609 (2009)

    Google Scholar 

  4. P.D. Serpico, Possible causes of a rise with energy of the cosmic ray positron fraction. Phys. Rev. D 79(2), 021302 (2009)

    Article  ADS  Google Scholar 

  5. J. Chang et al. [ATIC collaboration], An excess of cosmic ray electrons at energies of 300–800 GeV. Nature 456, 362–365 (2008)

    Google Scholar 

  6. D. Hooper, P. Blasi, P.D. Serpico, Pulsars as the sources of high energy cosmic ray positrons. J. Cosmol. Astropart. Phys. 1, 25 (2009)

    Article  ADS  Google Scholar 

  7. A.M. Atoyan, F.A. Aharonian, H.J. Völk, Electrons and positrons in the galactic cosmic rays. Phys. Rev. D 52, 3265–3275 (1995)

    Article  ADS  Google Scholar 

  8. C.S. Shen, Pulsars and very high-energy cosmic-ray electrons. Astrophys. J. Lett. 162, L181 (1970)

    Article  ADS  Google Scholar 

  9. A.K. Harding, R. Ramaty, The pulsar contribution to galactic cosmic ray positrons, in International Cosmic Ray Conference, vol. 2 (1987), p. 92

    Google Scholar 

  10. S. Profumo, Dissecting cosmic-ray electron-positron data with Occam’s Razor: the role of known pulsars. Central Eur. J. Phy. 10(1), 1–31 (2012)

    Google Scholar 

  11. R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia telescope national facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005)

    Article  ADS  Google Scholar 

  12. R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia telescope national facility pulsar catalogue. http://www.atnf.csiro.au/people/pulsar/psrcat/

  13. M. Markevitch, A.H. Gonzalez, D. Clowe, A. Vikhlinin, W. Forman, C. Jones, S. Murray, W. Tucker, Direct constraints on the dark matter self-interaction cross section from the merging galaxy cluster 1E 0657-56. Astrophys. J. 606, 819–824 (2004)

    Article  ADS  Google Scholar 

  14. E. Komatsu, J. Dunkley, M.R. Nolta, C.L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon, L. Page, D.N. Spergel, M. Halpern, R.S. Hill, A. Kogut, S.S. Meyer, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, Five-year Wilkinson microwave anisotropy probe observations: cosmological interpretation. Astrophys. J. Suppl. 180, 330–376 (2009)

    Article  ADS  Google Scholar 

  15. V. Springel, C.S. Frenk, S.D.M. White, The large-scale structure of the Universe. Nature 440, 1137–1144 (2006)

    Article  ADS  Google Scholar 

  16. M. Cirelli, M. Kadastik, M. Raidal, A. Strumia, Model-independent implications of the positron, electron and antiproton cosmic ray spectra on properties of dark matter. Nucl. Phys. B 813, 1–21 (2009)

    Article  ADS  MATH  Google Scholar 

  17. M. Cirelli, R. Franceschini, A. Strumia, Minimal dark matter predictions for galactic positrons, anti-protons, photons. Nucl. Phys. B 800, 204–220 (2008)

    Article  ADS  MATH  Google Scholar 

  18. W.B. Atwood et al. [Fermi Collaboration], The large area telescope on the fermi gamma-ray space telescope mission. Astrophys. J. 697, 1071–1102 (2009)

    Google Scholar 

  19. A.A. Abdo et al. [Fermi Collaboration], Measurement of the cosmic ray \(e^{+}+e^{-}\) spectrum from 20GeV to 1TeV with the fermi large area telescope. Phys. Rev. Lett. 102(18), 181101 (2009)

    Google Scholar 

  20. M. Ackermann et al. [Fermi Collaboration], Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV. Phys. Rev. D 82(9), 092004 (2010)

    Google Scholar 

  21. M. Ackermann et al. [Fermi collaboration], Searches for cosmic-ray electron anisotropies with the fermi large area telescope. Phys. Rev. D 82(9), 092003 (2010)

    Google Scholar 

  22. D. Grasso, S. Profumo, A.W. Strong, L. Baldini, R. Bellazzini, E.D. Bloom, J. Bregeon, G. Di Bernardo, D. Gaggero, N. Giglietto, T. Kamae, L. Latronico, F. Longo, M.N. Mazziotta, A.A. Moiseev, A. Morselli, J.F. Ormes, M. Pesce-Rollins, M. Pohl, M. Razzano, C. Sgrò, G. Spandre, T.E. Stephens, On possible interpretations of the high energy electron-positron spectrum measured by the fermi large area telescope. Astropart. Phys. 32, 140–151 (2009)

    Article  ADS  Google Scholar 

  23. C. Evoli, D. Gaggero, D. Grasso, L. Maccione, Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: a new diffusion model. J. Cosmol. Astropart. Phys. 10, 18 (2008)

    Article  ADS  Google Scholar 

  24. G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso, L. Maccione, Unified interpretation of cosmic ray nuclei and antiproton recent measurements. Astropart. Phys. 34, 274–283 (2010)

    Article  ADS  Google Scholar 

  25. M. Pohl, C. Perrot, I. Grenier, S. Digel, The imprint of Gould’s Belt on the local cosmic-ray electron spectrum. Astron. Astrophys. 409, 581–588 (2003)

    Article  ADS  Google Scholar 

  26. T. Delahaye, R. Lineros, F. Donato, N. Fornengo, J. Lavalle, P. Salati, R. Taillet, Galactic secondary positron flux at the Earth. Astron. Astrophys. 501, 821–833 (2009)

    Article  ADS  Google Scholar 

  27. V.L. Ginzburg, V.S. Ptuskin, On the origin of cosmic rays: some problems in high-energy astrophysics. Rev. Mod. Phys. 48, 161–189 (1976)

    Article  ADS  Google Scholar 

  28. D.J. Thompson, Z. Arzoumanian, D.L. Bertsch, K.T.S. Brazier, J. Chiang, N. D’Amico, B.L. Dingus, J.A. Esposito, J.M. Fierro, C.E. Fichtel, R.C. Hartman, S.D. Hunter, S. Johnston, G. Kanbach, V.M. Kaspi, D.A. Kniffen, Y.C. Lin, A.G. Lyne, R.N. Manchester, J.R. Mattox, H.A. Mayer-Hasselwander, P.F. Michelson, C. von Montigny, H.I. Nel, D.J. Nice, P.L. Nolan, P.V. Ramanamurthy, S.L. Shemar, E.J. Schneid, P. Sreekumar, J.H. Taylor, EGRET high-energy gamma-ray pulsar studies. 1: Young spin-powered pulsars. Astrophys. J. 436, 229–238 (1994)

    Article  ADS  Google Scholar 

  29. F.A. Aharonian, A.M. Atoyan, T. Kifune, Inverse Compton gamma radiation of faint synchrotron X-ray nebulae around pulsars. Mon. Not. R. Astron. Soc. 291, 162–176 (1997)

    ADS  Google Scholar 

  30. A.A. Abdo et al. [Fermi Collaboration], The first fermi large area telescope catalog of gamma-ray pulsars. Astrophys. J. Suppl. 187, 460–494 (2010)

    Google Scholar 

  31. F.A. Aharonian, Very high energy cosmic gamma radiation: a crucial window on the extreme Universe (World Scientific Publishing, River Edges, 2004)

    Google Scholar 

  32. I. Büsching, C. Venter, O.C. de Jager, Contributions from nearby pulsars to the local cosmic ray electron spectrum. Adv. Space Res. 42, 497–503 (2008)

    Article  ADS  Google Scholar 

  33. T. Delahaye, J. Lavalle, R. Lineros, F. Donato, N. Fornengo, Galactic electrons and positrons at the Earth: new estimate of the primary and secondary fluxes. Astron. Astrophys. 524, A51 (2010)

    Article  ADS  Google Scholar 

  34. J. Diemand, M. Kuhlen, P. Madau, M. Zemp, B. Moore, D. Potter, J. Stadel, Clumps and streams in the local dark matter distribution. Nature 454, 735–738 (2008)

    Article  ADS  Google Scholar 

  35. D.P. Finkbeiner, N. Weiner, Exciting dark matter and the INTEGRAL/SPI 511keV signal. Phys. Rev. D 76(8), 083519 (2007)

    Article  ADS  Google Scholar 

  36. M. Ahlers, P. Mertsch, S. Sarkar, Cosmic ray acceleration in supernova remnants and the FERMI/PAMELA data. Phys. Rev. D 80(12), 123017 (2009)

    Article  ADS  Google Scholar 

  37. P. Blasi, Origin of the positron excess in cosmic rays. Phys. Rev. Lett. 103(5), 051104 (2009)

    Article  ADS  Google Scholar 

  38. N.J. Shaviv, E. Nakar, T. Piran, Inhomogeneity in cosmic ray sources as the origin of the electron spectrum and the PAMELA anomaly. Phys. Rev. Lett. 103(11), 111302 (2009)

    Article  ADS  Google Scholar 

  39. P. Blasi, P.D. Serpico, High-energy antiprotons from old supernova remnants. Phys. Rev. Lett. 103(8), 081103 (2009)

    Article  ADS  Google Scholar 

  40. P. Mertsch, S. Sarkar, Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei. Phys. Rev. Lett. 103(8), 081104 (2009)

    Article  ADS  Google Scholar 

  41. J. Stockton, Average inhomogeneities in Milky Way SNII and The PAMELA anomaly. ArXiv e-prints (2011)

    Google Scholar 

  42. G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso, L. Maccione, M.N. Mazziotta, Implications of the cosmic ray electron spectrum and anisotropy measured with Fermi-LAT. Astropart. Phys. 34, 528–538 (2011)

    Article  ADS  Google Scholar 

  43. D.A. Green, A revised Galactic supernova remnant catalogue. Bull. Astron. Soc. India 37, 45–61 (2009)

    ADS  Google Scholar 

  44. M. Ackermann et al. [Fermi Collaboration], Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. ArXiv e-prints (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaggero, D. (2012). The Leptonic Field. In: Cosmic Ray Diffusion in the Galaxy and Diffuse Gamma Emission. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29949-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29949-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29948-3

  • Online ISBN: 978-3-642-29949-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics