The Leptonic Field

  • Daniele Gaggero
Part of the Springer Theses book series (Springer Theses)


In this chapter I will discuss the leptonic part of CRs: electrons and positrons. This component has been matter of debate because—as I pointed out in the introduction—from recent measurements very interesting signs of either new astrophysical sources or even new physics came out.


Dark Matter Light Supersymmetric Particle Annihilation Cross Section Large Area Telescope Electron Positron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T.A. Porter, A.W. Strong, A new estimate of the Galactic interstellar radiation field between 0.1 um and 1000 um, in International Cosmic Ray Conference, vol. 4 (2005), p. 77Google Scholar
  2. 2.
    S.V. Bulanov, V.A. Dogel, The influence of the energy dependence of the diffusion coefficient on the spectrum of the electron component of cosmic rays and the radio background radiation of the galaxy. Astrophys. Space Sci. 29, 305–318 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    O. Adriani et al. [PAMELA collaboration], An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607–609 (2009)Google Scholar
  4. 4.
    P.D. Serpico, Possible causes of a rise with energy of the cosmic ray positron fraction. Phys. Rev. D 79(2), 021302 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    J. Chang et al. [ATIC collaboration], An excess of cosmic ray electrons at energies of 300–800 GeV. Nature 456, 362–365 (2008)Google Scholar
  6. 6.
    D. Hooper, P. Blasi, P.D. Serpico, Pulsars as the sources of high energy cosmic ray positrons. J. Cosmol. Astropart. Phys. 1, 25 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    A.M. Atoyan, F.A. Aharonian, H.J. Völk, Electrons and positrons in the galactic cosmic rays. Phys. Rev. D 52, 3265–3275 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    C.S. Shen, Pulsars and very high-energy cosmic-ray electrons. Astrophys. J. Lett. 162, L181 (1970)ADSCrossRefGoogle Scholar
  9. 9.
    A.K. Harding, R. Ramaty, The pulsar contribution to galactic cosmic ray positrons, in International Cosmic Ray Conference, vol. 2 (1987), p. 92Google Scholar
  10. 10.
    S. Profumo, Dissecting cosmic-ray electron-positron data with Occam’s Razor: the role of known pulsars. Central Eur. J. Phy. 10(1), 1–31 (2012)Google Scholar
  11. 11.
    R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia telescope national facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia telescope national facility pulsar catalogue.
  13. 13.
    M. Markevitch, A.H. Gonzalez, D. Clowe, A. Vikhlinin, W. Forman, C. Jones, S. Murray, W. Tucker, Direct constraints on the dark matter self-interaction cross section from the merging galaxy cluster 1E 0657-56. Astrophys. J. 606, 819–824 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    E. Komatsu, J. Dunkley, M.R. Nolta, C.L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon, L. Page, D.N. Spergel, M. Halpern, R.S. Hill, A. Kogut, S.S. Meyer, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, Five-year Wilkinson microwave anisotropy probe observations: cosmological interpretation. Astrophys. J. Suppl. 180, 330–376 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    V. Springel, C.S. Frenk, S.D.M. White, The large-scale structure of the Universe. Nature 440, 1137–1144 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    M. Cirelli, M. Kadastik, M. Raidal, A. Strumia, Model-independent implications of the positron, electron and antiproton cosmic ray spectra on properties of dark matter. Nucl. Phys. B 813, 1–21 (2009)ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    M. Cirelli, R. Franceschini, A. Strumia, Minimal dark matter predictions for galactic positrons, anti-protons, photons. Nucl. Phys. B 800, 204–220 (2008)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    W.B. Atwood et al. [Fermi Collaboration], The large area telescope on the fermi gamma-ray space telescope mission. Astrophys. J. 697, 1071–1102 (2009)Google Scholar
  19. 19.
    A.A. Abdo et al. [Fermi Collaboration], Measurement of the cosmic ray \(e^{+}+e^{-}\) spectrum from 20GeV to 1TeV with the fermi large area telescope. Phys. Rev. Lett. 102(18), 181101 (2009)Google Scholar
  20. 20.
    M. Ackermann et al. [Fermi Collaboration], Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV. Phys. Rev. D 82(9), 092004 (2010)Google Scholar
  21. 21.
    M. Ackermann et al. [Fermi collaboration], Searches for cosmic-ray electron anisotropies with the fermi large area telescope. Phys. Rev. D 82(9), 092003 (2010)Google Scholar
  22. 22.
    D. Grasso, S. Profumo, A.W. Strong, L. Baldini, R. Bellazzini, E.D. Bloom, J. Bregeon, G. Di Bernardo, D. Gaggero, N. Giglietto, T. Kamae, L. Latronico, F. Longo, M.N. Mazziotta, A.A. Moiseev, A. Morselli, J.F. Ormes, M. Pesce-Rollins, M. Pohl, M. Razzano, C. Sgrò, G. Spandre, T.E. Stephens, On possible interpretations of the high energy electron-positron spectrum measured by the fermi large area telescope. Astropart. Phys. 32, 140–151 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    C. Evoli, D. Gaggero, D. Grasso, L. Maccione, Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: a new diffusion model. J. Cosmol. Astropart. Phys. 10, 18 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso, L. Maccione, Unified interpretation of cosmic ray nuclei and antiproton recent measurements. Astropart. Phys. 34, 274–283 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M. Pohl, C. Perrot, I. Grenier, S. Digel, The imprint of Gould’s Belt on the local cosmic-ray electron spectrum. Astron. Astrophys. 409, 581–588 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    T. Delahaye, R. Lineros, F. Donato, N. Fornengo, J. Lavalle, P. Salati, R. Taillet, Galactic secondary positron flux at the Earth. Astron. Astrophys. 501, 821–833 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    V.L. Ginzburg, V.S. Ptuskin, On the origin of cosmic rays: some problems in high-energy astrophysics. Rev. Mod. Phys. 48, 161–189 (1976)ADSCrossRefGoogle Scholar
  28. 28.
    D.J. Thompson, Z. Arzoumanian, D.L. Bertsch, K.T.S. Brazier, J. Chiang, N. D’Amico, B.L. Dingus, J.A. Esposito, J.M. Fierro, C.E. Fichtel, R.C. Hartman, S.D. Hunter, S. Johnston, G. Kanbach, V.M. Kaspi, D.A. Kniffen, Y.C. Lin, A.G. Lyne, R.N. Manchester, J.R. Mattox, H.A. Mayer-Hasselwander, P.F. Michelson, C. von Montigny, H.I. Nel, D.J. Nice, P.L. Nolan, P.V. Ramanamurthy, S.L. Shemar, E.J. Schneid, P. Sreekumar, J.H. Taylor, EGRET high-energy gamma-ray pulsar studies. 1: Young spin-powered pulsars. Astrophys. J. 436, 229–238 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    F.A. Aharonian, A.M. Atoyan, T. Kifune, Inverse Compton gamma radiation of faint synchrotron X-ray nebulae around pulsars. Mon. Not. R. Astron. Soc. 291, 162–176 (1997)ADSGoogle Scholar
  30. 30.
    A.A. Abdo et al. [Fermi Collaboration], The first fermi large area telescope catalog of gamma-ray pulsars. Astrophys. J. Suppl. 187, 460–494 (2010)Google Scholar
  31. 31.
    F.A. Aharonian, Very high energy cosmic gamma radiation: a crucial window on the extreme Universe (World Scientific Publishing, River Edges, 2004)Google Scholar
  32. 32.
    I. Büsching, C. Venter, O.C. de Jager, Contributions from nearby pulsars to the local cosmic ray electron spectrum. Adv. Space Res. 42, 497–503 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    T. Delahaye, J. Lavalle, R. Lineros, F. Donato, N. Fornengo, Galactic electrons and positrons at the Earth: new estimate of the primary and secondary fluxes. Astron. Astrophys. 524, A51 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    J. Diemand, M. Kuhlen, P. Madau, M. Zemp, B. Moore, D. Potter, J. Stadel, Clumps and streams in the local dark matter distribution. Nature 454, 735–738 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    D.P. Finkbeiner, N. Weiner, Exciting dark matter and the INTEGRAL/SPI 511keV signal. Phys. Rev. D 76(8), 083519 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    M. Ahlers, P. Mertsch, S. Sarkar, Cosmic ray acceleration in supernova remnants and the FERMI/PAMELA data. Phys. Rev. D 80(12), 123017 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    P. Blasi, Origin of the positron excess in cosmic rays. Phys. Rev. Lett. 103(5), 051104 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    N.J. Shaviv, E. Nakar, T. Piran, Inhomogeneity in cosmic ray sources as the origin of the electron spectrum and the PAMELA anomaly. Phys. Rev. Lett. 103(11), 111302 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    P. Blasi, P.D. Serpico, High-energy antiprotons from old supernova remnants. Phys. Rev. Lett. 103(8), 081103 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    P. Mertsch, S. Sarkar, Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei. Phys. Rev. Lett. 103(8), 081104 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    J. Stockton, Average inhomogeneities in Milky Way SNII and The PAMELA anomaly. ArXiv e-prints (2011)Google Scholar
  42. 42.
    G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso, L. Maccione, M.N. Mazziotta, Implications of the cosmic ray electron spectrum and anisotropy measured with Fermi-LAT. Astropart. Phys. 34, 528–538 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    D.A. Green, A revised Galactic supernova remnant catalogue. Bull. Astron. Soc. India 37, 45–61 (2009)ADSGoogle Scholar
  44. 44.
    M. Ackermann et al. [Fermi Collaboration], Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. ArXiv e-prints (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniele Gaggero
    • 1
  1. 1.Instituto Nazionale di Fisica Nucleare (INFN)—Sezione di PisaPisaItaly

Personalised recommendations