Advertisement

Propagation of CR Nuclei: Our Results

  • Daniele Gaggero
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Hadrons are the most abundant particles of the CR flux and it is natural to start with this dominant component. In this chapter I will describe how to build a CR propagation model, which assumptions are necessary on the source term, the gas distribution and other astrophysical inputs.

Keywords

Convective Velocity Particle Dark Matter Diffusion Halo Injection Spectrum Local Interstellar Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K.M. Ferrière. The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001). http://arxiv.org/abs/astro-ph/0106359
  2. 2.
    V.S. Ptuskin, I.V. Moskalenko, F.C. Jones, A.W. Strong, V.N. Zirakashvili, Dissipation of magnetohydrodynamic waves on energetic particles: impact on interstellar turbulence and cosmic-ray transport. Astrophys. J. 642, 902–916 (2006). http://arxiv.org/abs/astro-ph/0510335 Google Scholar
  3. 3.
    L.J. Gleeson, W.I. Axford, Solar modulation of galactic cosmic rays. Astrophys. J. 154, 1011 (1968)ADSCrossRefGoogle Scholar
  4. 4.
    D. Maurin, F. Donato, R. Taillet, P. Salati, Cosmic rays below Z=30 in a diffusion model: new constraints on propagation parameters. Astrophys. J. 555, 585–596 (2001). http://arxiv.org/abs/astro-ph/0101231 Google Scholar
  5. 5.
    F. Donato, D. Maurin, P. Salati, A. Barrau, G. Boudoul, R. Taillet, Antiprotons from Spallations of cosmic rays on interstellar matter. Astrophys. J. 563, 172–184 (2001). http://arxiv.org/abs/astro-ph/0103150 Google Scholar
  6. 6.
    A.W. Strong, I.V. Moskalenko, Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J. 509, 212–228 (1998). http://arxiv.org/abs/astro-ph/9807150 Google Scholar
  7. 7.
    A.W. Strong, I.V. Moskalenko, O. Reimer, Diffuse galactic continuum gamma rays: a model compatible with EGRET data and cosmic-ray measurements. Astrophys. J. 613, 962–976 (2004). http://arxiv.org/abs/astro-ph/0406254
  8. 8.
    A.W. Strong, I.V. Moskalenko, V.S. Ptuskin. Cosmic-ray propagation and interactions in the galaxy. Ann. Rev. Nucl. Part. Sci. 57, 285–327 (2007). http://arxiv.org/abs/astro-ph/0701517 Google Scholar
  9. 9.
    F. Donato, N. Fornengo, D. Maurin, P. Salati, R. Taillet. Antiprotons in cosmic rays from neutralino annihilation. Phys. Rev. D 69(6), 063501 (2004). http://arxiv.org/abs/astro-ph/0306207 Google Scholar
  10. 10.
    L. Bronfman, R.S. Cohen, H. Alvarez, J. May, P. Thaddeus, A CO survey of the southern Milky Way—the mean radial distribution of molecular clouds within the solar circle. Astrophys. J. 324, 248–266 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Cordes, J.M. Weisberg, D.A. Frail, S.R. Spangler, M. Ryan, The galactic distribution of free electrons. Nature 354, 121–124 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso, L. Maccione. Unified interpretation of cosmic ray nuclei and antiproton recent measurements. Astropart. Phys. 34, 274–283 (2010). http://arxiv.org/abs/0909.4548 Google Scholar
  13. 13.
    O. Adriani et al. [PAMELA collaboration], New measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation. Phys. Rev. Lett., 102(5), 051101 (2009). http://arxiv.org/abs/0810.4994 Google Scholar
  14. 14.
    H.S. Ahn et al. [CREAM collaboration], Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment. Astropart. Phys. 30, 133–141 (2008). http://arxiv.org/abs/0808.1718
  15. 15.
    C. Evoli, D. Gaggero, D. Grasso, L. Maccione, Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: a new diffusion model. J. Cosmol. Astropart. Phys. 10 18 (2008). http://arxiv.org/abs/0807.4730
  16. 16.
    M.A. Gordon, W.B. Burton, Carbon monoxide in the galaxy. I—the radial distribution of CO, H\(_2\), and nucleons. Astrophys. J. 208, 346–353 (1976)ADSCrossRefGoogle Scholar
  17. 17.
    I.V. Moskalenko, A.W. Strong, J.F. Ormes, M.S. Potgieter. Secondary antiprotons and propagation of cosmic rays in the galaxy and heliosphere. Astrophys. J. 565, 280–296 (2002). http://arxiv.org/abs/astro-ph/0106567 Google Scholar
  18. 18.
    L.C. Tan, L.K. Ng, Parameterization of invariant cross section in p-p collisions using a new scaling variable. Phys. Rev. D 26, 1179–1182 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    T. Sanuki, M. Motoki, H. Matsumoto, E.S. Seo, J.Z. Wang, K. Abe, K. Anraku, Y. Asaoka, M. Fujikawa, M. Imori, T. Maeno, Y. Makida, N. Matsui, H. Matsunaga, J. Mitchell, T. Mitsui, A. Moiseev, J. Nishimura, M. Nozaki, S. Orito, J. Ormes, T. Saeki, M. Sasaki, Y. Shikaze, T. Sonoda, R. Streitmatter, J. Suzuki, K. Tanaka, I. Ueda, N. Yajima, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura. Precise measurement of cosmic-ray proton and helium spectra with the BESS spectrometer. Astrophys. J. 545, 1135–1142 (2000). http://arxiv.org/abs/astro-ph/0002481 Google Scholar
  20. 20.
    M. Aguilar et al. [AMS-01 Collaboration], The alpha magnetic spectrometer (AMS) on the international space station: Part I—results from the test flight on the space shuttle. Phys. Rep. 366, 331–405 (2002)Google Scholar
  21. 21.
    J.J. Engelmann, P. Ferrando, A. Soutoul, P. Goret, E. Juliusson, Charge composition and energy spectra of cosmic-ray nuclei for elements from Be to NI—results from HEAO-3-C2. Astron. Astrophys. 233, 96–111 (1990)ADSGoogle Scholar
  22. 22.
    S.P. Swordy, D. Mueller, P. Meyer, J. L’Heureux, J.M. Grunsfeld, Relative abundances of secondary and primary cosmic rays at high energies. Astrophys. J. 349, 625–633 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    D. Maurin, A. Putze, L. Derome, Systematic uncertainties on the cosmic-ray transport parameters. Is it possible to reconcile B/C data with \(\delta \) = 1/3 or \(\delta \) = 1/2? Astron. Astrophys. 516, A67 (2010). http://arxiv.org/abs/1001.0553
  24. 24.
    D. Maurin, R. Taillet, F. Donato, P. Salati, A. Barrau, G. Boudoul. Galactic cosmic ray nuclei as a tool for astroparticle physics. ArXiv Astrophys. e-prints (2002). http://arxiv.org/abs/astro-ph/0212111
  25. 25.
    W.R. Webber, A. Soutoul, J.C. Kish, J.M. Rockstroh, Updated formula for calculating partial cross sections for nuclear reactions of nuclei with Z = 28 and E > 150 MeV/n in hydrogen targets. Astrophys. J. Suppl. Ser. 144, 153–167 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniele Gaggero
    • 1
  1. 1.Instituto Nazionale di Fisica Nucleare (INFN)—Sezione di PisaPisaItaly

Personalised recommendations