Cosmic Ray Diffusion in the Galaxy

  • Daniele Gaggero
Part of the Springer Theses book series (Springer Theses)


In this Chapter I will describe the physics that stands behind the problem of CR propagation. Since the battlefield in which CR propagation takes place is the interstellar medium (ISM) of our Galaxy, I will first present a complete description of the Galactic environment and its components, with particular attention to the interstellar gas, the magnetic field (related to CR diffusion and spallation) and the distribution of pulsars and Supernova Remnants (related to CR origin); I will point out the deep interplay that exist between these components that continuously interact one another: the gas triggers star formation, massive stars quickly generate Supernova explosions that accelerate CRs, the gas returns back again in the ISM and the released energy triggers the turbulence that is responsible of the CR random walk.


Star Formation Interstellar Medium Supernova Remnant Supernova Explosion Interstellar Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Fermi, On the origin of the cosmic radiation. Phys. Rev. 75, 1169–1174 (1949)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    K.M. Ferrière, The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    J.H. Oort. A summary and assessment of current 21-cm results concerning spiral and disk structures in our galaxy. In URSI Symposium 1: Paris Symposium on Radio Astronomy, ed. by R.N. Bracewell, vol. 9 of IAU Symposium 1959. p. 409Google Scholar
  4. 4.
    R.A. Benjamin. The spiral structure of the galaxy: something old, something new... In Massive Star Formation: Observations Confront Theory, 2008. ed. by H. Beuther, H. Linz, T. Henning. Astronomical Society of the Pacific Conference Series. vol. 387, p. 375Google Scholar
  5. 5.
    E. Churchwell, B.L. Babler, M.R. Meade, B.A. Whitney, R. Benjamin, R. Indebetouw, C. Cyganowski, T.P. Robitaille, M. Povich, C. Watson, S. Bracker, The spitzer/GLIMPSE surveys: a new view of the milky way. Publ. Astron. Soc. Pac. 121, 213–230 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    T.M. Dame, H. Ungerechts, R.S. Cohen, E.J. de Geus, I.A. Grenier, J. May, D.C. Murphy, L.-A. Nyman, P. Thaddeus, A composite CO survey of the entire milky way. Astrophys. J. 322, 706–720 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    L. Bronfman, R.S. Cohen, H. Alvarez, J. May, P. Thaddeus, A CO survey of the southern milky way—the mean radial distribution of molecular clouds within the solar circle. Astrophys. J. 324, 248–266 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    H. Nakanishi, Y. Sofue, Three-Dimensional distribution of the ISM in the milky way galaxy:II. The molecular gas disk. Publ. Astron. Soc. Jpn. 58, 847–860 (2006)ADSGoogle Scholar
  9. 9.
    M. Pohl, P. Englmaier, N. Bissantz, Three-Dimensional distribution of molecular gas in the barred milky way. Astrophys. J. 677, 283–291 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    R.J. Reynolds, Ionized disk/halo gas—insight from optical emission lines and pulsar dispersion measures. ed. by H. Bloemen. IAU Symposium, 1991. The Interstellar Disk-Halo Connection in Galaxies, vol. 144, pp. 67–76Google Scholar
  11. 11.
    J.M. Cordes, T.J.W. Lazio, NE2001.I. A new model for the galactic distribution of free electrons and its fluctuations. ArXiv Astrophysics e-prints, 2002Google Scholar
  12. 12.
    C.F. McKee, The dynamical structure and evolution of giant molecular clouds. In NATO ASIC Proceedings of 540: The Origin of Stars and Planetary Systems, 1999. ed. by C.J. Lada, N.D. Kylafis. p. 29Google Scholar
  13. 13.
    D. Chappell, J. Scalo, Multifractal scaling, geometrical diversity, and hierarchical structure in the cool interstellar medium. Astrophys. J. 551, 712–729 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    N. Sánchez, E.J. Alfaro, E. Pérez, Determining the fractal dimension of the interstellar medium. In Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 35 of Revista Mexicana de Astronomica y Astrofisca, 27, 76–77 (2009)Google Scholar
  15. 15.
    I. Yusifov, I. Küçük, Revisiting the radial distribution of pulsars in the galaxy. Astron. Astrophys. 422, 545–553 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Abdo et al. [Fermi collaboration]. Astrophys. J. Lett. 710, L92–L97 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    F. Aharonian, [H.E.S.S. Collaboration]. A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS. Astron. Astrophys. 449, 223–242 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    D.A. Green, A revised galactic supernova remnant catalogue. Bull. Astron. Soc. India 37, 45–61 (2009)ADSGoogle Scholar
  19. 19.
    D.A. Green. A catalogue of galactic supernova remnants.
  20. 20.
    R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia telescope national facility pulsar catalogue.
  21. 21.
    R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 129, 1993–2006 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    D.R. Lorimer, The galactic distribution of radio pulsars. In 35th COSPAR Scientific Assembly, 2004. ed. by J.-P. Paillé. vol. 35, p. 1321Google Scholar
  23. 23.
    X.H. Sun, W. Reich, A. Waelkens, T.A. Enßlin, Radio observational constraints on Galactic 3D-emission models. Astron. Astrophys. 477, 573–592 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    J.C. Brown, The magnetic field of the milky way galaxy. In Astronomical Society of the Pacific Conference, 2010. ed. by R. Kothes, T.L. Landecker, A.G. Willis. Astronomical Society of the Pacific Conference Series, vol. 438, p. 216Google Scholar
  25. 25.
    X.-H. Sun, W. Reich, The Galactic halo magneticfield revisited. Res. Astron. Astrophys. 10, 1287–1297 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.S. Ptuskin, Astrophysics of Cosmic Rays, (North holland, Amsterdam, 1990)Google Scholar
  27. 27.
    A.N. Kolmogorov, The local structure of turbulence inincompressible viscous fluid for very large Reynolds numbers. Royal Soc. Lond. Proc. Ser. A 434, 9–13 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    R.H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    J.W. Armstrong, B.J. Rickett, S.R. Spangler, Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    J. Giacalone, J.R. Jokipii, The transport of cosmic rays across a turbulent magnetic field. Astrophys. J. 520, 204–214 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    A. Shalchi, R. Schlickeiser, Evidence for the nonlinear transport of Galactic cosmic rays. Astrophys. J. Lett. 626, L97–L99 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniele Gaggero
    • 1
  1. 1.Instituto Nazionale di Fisica Nucleare (INFN)—Sezione di PisaPisaItaly

Personalised recommendations