Path Planning in Probabilistic Environment by Bacterial Memetic Algorithm

  • János Botzheim
  • Yuichiro Toda
  • Naoyuki Kubota
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 14)


The goal of the path planning problem is to determine an optimal collision-free path between a start and a target point for a mobile robot in an environment surrounded by obstacles. In case of probabilistic environment not only static obstacles obstruct the free passage of the robot, but there are appearances of obstacles with probability. The problem is approached by the bacterial memetic algorithm. The objective is to minimize the path length and the number of turns without colliding with an obstacle. Our method is able to generate a collision-free path in probabilistic environment. The proposed algorithm is tested by simulations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Botzheim, J., Cabrita, C., Kóczy, L.T., Ruano, A.E.: Fuzzy rule extraction by bacterial memetic algorithms. In: Proceedings of the 11th World Congress of International Fuzzy Systems Association, Beijing, China, pp. 1563–1568 (2005)Google Scholar
  2. 2.
    Botzheim, J., Toda, Y., Kubota, N.: Bacterial memetic algorithm for offline path planning of mobile robots. Memetic Computing (2012), doi: 10.1007/s12293-012-0076-0Google Scholar
  3. 3.
    Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive memetic algorithm for online and offline control design of PMSM drives. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 37, 28–41 (2007)CrossRefGoogle Scholar
  4. 4.
    Cordeiro, C.M., Agrawal, D.P.: Ad Hoc & Sensor Networks – Theory and Applications. World Scientific Publishing (2006)Google Scholar
  5. 5.
    Drobics, M., Botzheim, J.: Optimization of fuzzy rule sets using a bacterial evolutionary algorithm. Mathware and Soft Computing 15(1), 21–40 (2008)MATHGoogle Scholar
  6. 6.
    Fischer, T., Bauer, K., Merz, P.: Solving the routing and wavelength assignment problem with a multilevel distributed memetic algorithm. Memetic Computing 1(2), 101–123 (2009)CrossRefGoogle Scholar
  7. 7.
    Földesi, P., Botzheim, J., Kóczy, L.T.: Eugenic bacterial memetic algorithm for fuzzy road transport traveling salesman problem. International Journal of Innovative Computing, Information and Control 7(5(B)), 2775–2798 (2011)Google Scholar
  8. 8.
    Geisler, T., Manikas, T.: Autonomous robot navigation system using a novel value encoded genetic algorithm. In: Proceedings of the IEEE Midwest Symposium on Circuits and Systems, pp. 45–48 (2002)Google Scholar
  9. 9.
    Hasan, S.M.K., Sarker, R., Essam, D., Cornforth, D.: Memetic algorithms for solving job-shop scheduling problems. Memetic Computing 1(1), 69–83 (2009)CrossRefGoogle Scholar
  10. 10.
    Hermanu, A.: Genetic algorithm with modified novel value encoding technique for autonomous robot navigation. Master’s thesis, The University of Tulsa, Tulsa, OK, USA (2002)Google Scholar
  11. 11.
    Hosseinzadeh, A., Izadkhah, H.: Evolutionary approach for mobile robot path planning in complex environment. International Journal of Computer Science Issues 7(4), 1–9 (2010)Google Scholar
  12. 12.
    Kubota, N., Yorita, A.: Topological environment reconstruction in informationally structured space for pocket robot partners. In: Proceedings of the 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 2009, pp. 165–170 (2009)Google Scholar
  13. 13.
    Kubota, N., Sotobayashi, H., Obo, T.: Human interaction and behavior understanding based on sensor network with iPhone for rehabilitation. In: Proceedings of the International Workshop on Advanced Computational Intelligence and Intelligent Informatics (2009)Google Scholar
  14. 14.
    Luh, G.C., Lee, S.W.: A bacterial evolutionary algorithm for the job shop scheduling problem. Journal of the Chinese Institute of Industrial Engineers 23(3), 185–191 (2006)CrossRefGoogle Scholar
  15. 15.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Tech. Rep. Caltech, Pasadena, USA (1989)Google Scholar
  16. 16.
    Nawa, N.E., Furuhashi, T.: Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Transactions on Fuzzy Systems 7(5), 608–616 (1999)CrossRefGoogle Scholar
  17. 17.
    Sasaki, H., Kubota, N., Taniguchi, K.: Evolutionary Computation for Simultaneous Localization and Mapping Based on Topological Map of a Mobile Robot. In: Xiong, C.-H., Liu, H., Huang, Y., Xiong, Y.L. (eds.) ICIRA 2008, Part I. LNCS (LNAI), vol. 5314, pp. 883–891. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Sedighi, K.H., Ashenayi, K., Manikas, T.W., Wainwright, R.L., Tai, H.M.: Autonomous local path planning for a mobile robot using a genetic algorithm. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, CEC 2004, pp. 1338–1345 (2004)Google Scholar
  19. 19.
    Shahidi, N., Esmaeilzadeh, H., Abdollahi, M., Lucas, C.: Memetic algorithm based path planning for a mobile robot. In: Proceedings of the International Conference on Computational Intelligence, pp. 56–59 (2004)Google Scholar
  20. 20.
    Tang, J., Lim, M.H., Ong, Y.S.: Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Computing Journal 11(1), 873–888 (2007)CrossRefGoogle Scholar
  21. 21.
    Yang, S.X., Hu, Y.: Robot path planning in unstructured environments using a knowledge-based genetic algorithm. In: Proceedings of the 16th IFAC World Congress (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • János Botzheim
    • 1
    • 2
  • Yuichiro Toda
    • 2
  • Naoyuki Kubota
    • 2
  1. 1.Department of AutomationSzéchenyi István UniversityGyőrHungary
  2. 2.Graduate School of System DesignTokyo Metropolitan UniversityHinoJapan

Personalised recommendations