Skip to main content

Das Universum

  • Chapter
  • First Online:
Vom Urknall zum modernen Menschen
  • 6304 Accesses

Zusammenfassung

Jahrhundertelange Entwicklung von astronomischen Teleskopen, modernen Instrumenten und analytischen Untersuchungsmethoden sowie, in neuester Zeit, von umfangreichen Computersimulationen deuten darauf hin, dass Urknall und Kältetod den Anfang und das Ende unserer Welt markieren. Weltmodelle und präzise Beobachtungen erlauben, die Entwicklung von extrem heißen Frühphasen des Universums, in der die chemischen Elemente entstanden sind, bis zur Bildung von Sternen, Galaxien und den Strukturen des heutigen Weltalls nachzuvollziehen. Zusätzlich ermöglichen sie, das zukünftige Schicksal unserer Welt vorherzusagen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Aus experimentellen wie theoretischen Gründen wird angenommen, dass Lichtquanten keine Masse besitzen, ihre Masse also exakt gleich null ist. Das Konzept einer fiktiven Masse m F = E / c2 hat aber eine gewisse Berechtigung, weil man beobachtet, dass bei der Absorption eines Photons mit Energie E in Atomen, die Atommasse sich um den Betrag m F vergrößert und bei der Emission um m F verkleinert.

  2. 2.

    Der französische Physiker Louis-Victor de Broglie postulierte 1924 den Welle-Teilchen-Dualismus, nach dem auch klassische Teilchen wie Elektronen und Protonen Welleneigenschaft zeigen müssten. Jedem Teilchen der Masse m kann eine De-Broglie-Wellenlänge λ aufgrund von h / λ = mc zugeordnet werden, was durch Interferenzexperimente voll bestätigt wurde.

Literatur

  • Adams FC, Laughlin G (1997) A dying universe: the long-term fate and evolution of astrophysical objects. Rev Mod Phys 69:337, Appendix B

    Article  Google Scholar 

  • Alabidi L, Lyth DH (2006) Inflation models after WMAP year three. J Cosmol Astropart Phys 08:013

    Article  Google Scholar 

  • Benedict GF et al (2007) Hubble space telescope fine guidance sensor parallaxes of galactic cepheid variable stars: period-luminosity relations. Astron J 133:1810

    Google Scholar 

  • Bennett CL (2006) Cosmology from start to finish. Nature 440:1126

    Article  Google Scholar 

  • Börner G (2004) The early universe. Facts and fiction, 4. Aufl. Springer, Berlin

    Google Scholar 

  • Bojowald M (2007) What happened before the Big Bang? Nat Phys 3:523

    Article  Google Scholar 

  • Bojowald M (2009) Zurück vor den Urknall: Die ganze Geschichte des Universums. Fischer, Frankfurt

    Google Scholar 

  • Bouwens RJ et al (2011) A candidate redshift z ~ 10 galaxy and rapid changes in that population at an age of 500 Myr. Nature 469:504

    Article  Google Scholar 

  • Bromm V et al (2009) The formation of the first stars and galaxies. Nature 459:49

    Article  Google Scholar 

  • Bromm V, Yoshida N (2011) The first galaxies. Annu Rev Astron Astrophys 49:373

    Article  Google Scholar 

  • Burstein D, Rubin VC (1985) The distribution of mass in spiral galaxies. Astrophys J 297:423

    Article  Google Scholar 

  • Caldwell RR et al (2003) Phantom energy: dark energy with w< −1 causes a cosmic doomsday. Phys Rev Lett 91:071301-1

    Article  Google Scholar 

  • Carr B (Hrsg) (2007) Universe or multiverse? Cambridge University Press. http://www.mathropolis.comeze.com/library/universeormultiverse.pdf

  • Carter B (1974) Large number coincidences and the anthropic principle in cosmology, IAU Symposium 63:291

    Google Scholar 

  • Clark PC et al (2011) The formation and fragmentation of disks around primordial protostars. Science 331:1040

    Article  Google Scholar 

  • Coc A (2009) Big-bang nucleosynthesis: A probe of the early universe. Nucl. Inst. Meth. Phys. Res. A 611:224

    Article  Google Scholar 

  • Collins CA et al (2009) Early assembly of the most massive galaxies. Nature 458:603

    Article  Google Scholar 

  • Connes A (2008) On the fine structure of spacetime. In: Majid S (Hrsg) On space and time. Cambridge University Press, S 196

    Google Scholar 

  • Di Matteo T et al (2011) Cold flows and the first quasars. http://arxiv.org/abs/1107.1253

  • Dunkley J et al (2009) Five-year wilkinson microwave anisotropy probe (WMAP) Observations: Bayesian estimation of cosmic microwave background polarization maps. Astrophys J 701:1804

    Article  Google Scholar 

  • Eberty F (1923) Die Gestirne und die Weltgeschichte; Gedanken über Raum, Zeit und Ewigkeit. Neu hrsg. v. Gregorius Itelson. Mit einem Geleitwort von Albert Einstein. Rogoff, Berlin. Den Hinweis auf diesen Autor verdanke ich Reinhard Breuer

    Google Scholar 

  • Finkelstein SL et al (2010) On the stellar populations and evolution of star-forming galaxies at 6.3 < z < 8.6. Astrophys J 719:1250

    Article  Google Scholar 

  • Fixsen DJ et al (1996) The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys J 473:576

    Article  Google Scholar 

  • Fixsen DJ, Mather JC (2002) The spectral results of the far-infrared absolute spectrophotometer instrument on COBE. Astrophys J 581:817

    Article  Google Scholar 

  • Freedman WL et al (2001) Final results from the hubble space telescope key project to measure the hubble constant. Astrophys J 553:47

    Article  Google Scholar 

  • Gnedin OY (2011) Modeling formation of globular clusters: Beacons of Galactic Star Formation. Proc IAU Symp 270:381. http://arxiv.org/abs/1010.3707v1

    Google Scholar 

  • Greif TH et al (2008) The first galaxies: assembly, cooling and the onset of turbulence. Mon Not R Astron Soc 387:1021

    Article  Google Scholar 

  • Greif TH et al (2011) Simulations on a moving mesh. The clustered formation of population III Protostars. Astrophys J 737:75

    Article  Google Scholar 

  • Heath T (1981) Aristarchus of Samos. The ancient Copernicus. Dover, New York

    Google Scholar 

  • Heller M (2008) When physics meets metaphysics. In: Majid, S (Hrsg) On space and time. Cambridge University Press, S 238

    Chapter  Google Scholar 

  • Herrnstein JR et al (1999) A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk. Nature 400:539

    Article  Google Scholar 

  • Hinshaw G et al (2009) Five-year Wikinson microwave anisotropy probe observations: Data processing, sky maps, and basic results. Astrophys J Supp 180:225. http://map.gsfc.nasa.gov, http://map.gsfc.nasa.gov/m_mm.html

    Article  Google Scholar 

  • Hu W, Dodelson S (2002) Cosmic microwave background anisotropies. Annu Rev Astron Astrophys 40:171

    Article  Google Scholar 

  • Jarosik N et al (2011) Seven-year wilkinson microwave anisotropy probe (wmap) observations: sky maps, systematic errors, and basic results. Astrophys J Suppl 192:14

    Article  Google Scholar 

  • Johnson JL (2011) Formation of the first galaxies: theory and simulations. http://arxiv.org/abs/1105.5701

  • Kervella P et al (2008) The long-period galactic cepheid rs puppis I. a geometric distance from its light echoes. Astron Astrophys 480:167

    Article  Google Scholar 

  • Klypin A et al (2002) ΛCDM-based models for the milky way and M 31, I: dynamical models. Astrophys J 573:597

    Article  Google Scholar 

  • Kolanoski H (2011) http://www-zeuthen.desy.de/%7Ekolanosk/astro0910/skripte/astro.pdf

  • Komatsu E et al (2011) Seven-year wilkinson microwave anisotropy probe (wmap) observations: cosmological interpretation. Astrophys J Suppl 192:18

    Article  Google Scholar 

  • Liddle AR (1999) An introduction to cosmological inflation. http://arxiv.org/PS_cache/astro-ph/pdf/9901/9901124v1.pdf

  • Lineweaver CH, Davis TM (2005) Der Urknall. Mythos und Wahrheit. Spektrum der Wissenschaft 5:38

    Google Scholar 

  • Longair MS (1998) Galaxy formation. Springer, Berlin

    Book  Google Scholar 

  • Majid S (2008) Quantum spacetime and physical reality. In: Majid S (Hrsg) On space and time. Cambridge University Press, S 56

    Chapter  Google Scholar 

  • Manitius K (1963) Ptolemäus, Handbuch der Astronomie Band I. Teubner, Leipzig

    Google Scholar 

  • Méra D et al (1998) Towards a consistent model of the galaxy. II. Derivation of the model. Astron Astrophys 330:953

    Google Scholar 

  • Milgrom M (1983) A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys J 270:365

    Article  Google Scholar 

  • Mortlock DJ (2011) A luminous quasar at a redshift of z = 7085. Nature 474:616

    Article  Google Scholar 

  • Muir H (2002) Universe might yet collapse in ‘big crunch’. New Scientist, 6. Sept.

    Google Scholar 

  • Ostriker JP, Naab T (2012) Theoretical challenges in understanding galaxy evolution. Phys Today, Aug:43

    Google Scholar 

  • Riess AG et al (2009) A redetermination of the Hubble Constant with the Hubble Space Telescope from a differential distance ladder. Astrophys J 699:539

    Article  Google Scholar 

  • Rubin VC, Ford WKJ (1970) Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys J 159:379

    Article  Google Scholar 

  • Spergel DN et al (2003) First-year wilkinson microwave anisotropy probe (wmap) observations: determination of cosmological parameters. Astrophys J Suppl 148:175

    Article  Google Scholar 

  • Springel V (2005) The cosmological simulation code GADGET-2. Mon Not R Astron Soc 364:1105

    Article  Google Scholar 

  • Springel V et al (2005) Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435:629. http://www.mpa-garching.mpg.de/galform/millennium

    Article  Google Scholar 

  • Springel V et al (2006) The large-scale structure of the Universe. Nature 440:1137

    Article  Google Scholar 

  • Wiese JH (2008) Resolving the formation of protogalaxies. PhD Thesis. http://arxiv.org/abs/0804.4156v1

  • Willott CJ et al (2010) The Canada-France high-z quasar survey: nine new quasars and the luminosity function at redshift 6. Astron J 139:906

    Article  Google Scholar 

  • Yoshida N et al (2008) Protostar formation in the early universe. Science 321:669

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ulmschneider .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ulmschneider, P. (2014). Das Universum. In: Vom Urknall zum modernen Menschen. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29926-1_1

Download citation

Publish with us

Policies and ethics