Constructing Virtual Documents for Ontology Matching Using MapReduce

  • Hang Zhang
  • Wei Hu
  • Yuzhong Qu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7185)


Ontology matching is a crucial task for data integration and management on the Semantic Web. The ontology matching techniques today can solve many problems from heterogeneity of ontologies to some extent. However, for matching large ontologies, most ontology matchers take too long run time and have strong requirements on running environment. Based on the MapReduce framework and the virtual document technique, in this paper, we propose a 3-stage MapReduce-based approach called V-Doc+ for matching large ontologies, which significantly reduces the run time while keeping good precision and recall. Firstly, we establish four MapReduce processes to construct virtual document for each entity (class, property or instance), which consist of a simple process for the descriptions of entities, an iterative process for the descriptions of blank nodes and two processes for exchanging the descriptions with neighbors. Then, we use a word-weight-based partition method to calculate similarities between entities in the corresponding reducers. We report our results from two experiments on an OAEI dataset and a dataset from the biology domain. Its performance is assessed by comparing with existing ontology matchers. Additionally, we show how run time is reduced with increasing the size of cluster.


Computing Node MapReduce Framework Ontology Match Ontology Alignment Blank Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bleiholder, J., Naumann, F.: Data Fusion. ACM Computing Surveys 41(1), 1–41 (2008)CrossRefGoogle Scholar
  2. 2.
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  3. 3.
    Do, H., Rahm, E.: Matching Large Schemas: Approaches and Evaluation. Information Systems 32(6), 857–885 (2007)CrossRefGoogle Scholar
  4. 4.
    Euzenat, J., Ferrara, A., Meilicke, C., Nikolov, A., Pane, J., Scharffe, F., Shvaiko, P., Stuckenschmidt, H., Šváb-Zamazal, O., Svátek, V., Trojahn, C.: Results of the Ontology Alignment Evaluation Initiative 2010. In: ISWC Workshop on Ontology Matching (2010)Google Scholar
  5. 5.
    Euzenat, J., Isaac, A., Meilicke, C., Shvaiko, P., Stuckenschmidt, H., Šváb, O., Svátek, V., Hage, W., Yatskevich, M.: First Results of the Ontology Alignment Evaluation Initiative 2007. In: ISWC Workshop on Ontology Matching (2007)Google Scholar
  6. 6.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  7. 7.
    Gross, A., Hartung, M., Kirsten, T., Rahm, E.: On Matching Large Life Science Ontologies in Parallel. In: Lambrix, P., Kemp, G. (eds.) DILS 2010. LNCS, vol. 6254, pp. 35–49. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Hu, W., Qu, Y., Cheng, G.: Matching Large Ontologies: A Divide-and-Conquer Approach. Data & Knowledge Engineering, 140–160 (2008)Google Scholar
  9. 9.
    Jean-Mary, Y., Shironoshita, E., Kabuka, M.: Ontology Matching with Semantic Verification. Journal of Web Semantics 7(3), 235–251 (2009)CrossRefGoogle Scholar
  10. 10.
    Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A Dynamic Multistrategy Ontology Alignment Framework. IEEE Transactions on Knowledge and Data Engineering 21(8), 1218–1232 (2009)CrossRefGoogle Scholar
  11. 11.
    Mork, P., Bernstein, P.: Adapting a Generic Match Algorithm to Align Ontologies of Human Anatomy. In: Proceedings of the 20th International Conference on Data Engineering, pp. 787–790 (2004)Google Scholar
  12. 12.
    Moutselakis, E., Karakos, A.: Semantic Web Multimedia Metadata Retrieval: A Music Approach. In: 13th Panhellenic Conference on Informatics, pp. 43–47 (2009)Google Scholar
  13. 13.
    Mao, M., Peng, Y., Spring, M.: An Adaptive Ontology Mapping Approach with Neural Network Based Constraint Satisfaction. Web Semantics: Science. Services and Agents on the World Wide Web 8(1), 14–25 (2010)CrossRefGoogle Scholar
  14. 14.
    McGill, M., Salton, G.: Introduction to Modern Information Retrieval. McGraw-Hill (1983)Google Scholar
  15. 15.
    Peukert, E., Berthold, H., Rahm, E.: Rewrite Techniques for Performance Optimization of Schema Matching Processes. In: Proceedings of 13th International Conference on Extending Database Technology, pp. 453–464. ACM Press, New York (2010)CrossRefGoogle Scholar
  16. 16.
    Qu, Y., Hu, W., Cheng, G.: Constructing Virtual Documents for Ontology Matching. In: 15th International World Wide Web Conference, pp. 23–31. ACM Press, New York (2006)CrossRefGoogle Scholar
  17. 17.
    Rahm, E.: Towards Large-Scale Schema and Ontology Matching. Data-Centric Systems and Applications, Part I, 3–27 (2011)Google Scholar
  18. 18.
    Rosse, C., Mejino, L.: The Foundational Model of Anatomy Ontology. In: Burger, A., Davidson, D., Baldock, R. (eds.) Anatomy Ontologies for Bioinformatics: Principles and Practice, vol. 6, Part I, pp. 59–117. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Stoilos, G., Stamou, G., Kollias, S.: A String Metric for Ontology Alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Vernica, R., Carey, M., Li, D.: Efficient Parallel Set-Similarity Joins Using MapReduce. In: SIGMOD 2010 Proceedings of the 2010 International Conference on Management of Data, pp. 495–506. ACM Press, New York (2010)CrossRefGoogle Scholar
  21. 21.
    Vargas-Vera, M., Nagy, M.: Towards Intelligent Ontology Alignment Systems for Question Answering: Challenges and Roadblocks. Journal of Emerging Technologies in Web Intelligence 2(3), 244–257 (2010)CrossRefGoogle Scholar
  22. 22.
    Wang, P., Zhou, Y., Xu, B.: Matching Large Ontologies Based on Reduction Anchors. In: Proceedings of International Joint Conferences on Artificial Intelligence, pp. 2343–2348 (2011)Google Scholar
  23. 23.
    Zhang, S., Bodenreider, O.: Hybrid Alignment Strategy for Anatomical Ontologies: Results of the 2007 Ontology Alignment Contest. In: ISWC Workshop on Ontology Matching (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hang Zhang
    • 1
  • Wei Hu
    • 1
  • Yuzhong Qu
    • 1
  1. 1.State Key Laboratory for Novel Software TechnologyNanjing UniversityChina

Personalised recommendations