A Method of Contrastive Reasoning with Inconsistent Ontologies

  • Jun Fang
  • Zhisheng Huang
  • Frank van Harmelen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7185)


Contrastive reasoning is the reasoning with contrasts which are expressed as contrary conjunctions like the word ”but” in natural language. Contrastive answers are more informative for reasoning with inconsistent ontologies, as compared with the usual simple Boolean answer, i.e., either ”yes” or ”no”. In this paper, we propose a method of computing contrastive answers from inconsistent ontologies. The proposed approach has been implemented in the system CRION (Contrastive Reasoning with Inconsistent ONtologies) as a reasoning plug-in in the LarKC (Large Knowledge Collider) platform. We report several experiments in which we apply the CRION system to some realistic ontologies. This evaluation shows that contrastive reasoning is a useful extension to the existing approaches of reasoning with inconsistent ontologies.


Original Query Misleading Information Default Reasoning Consistent Subset Contrastive Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meyer, J.J.C., van der Hoek, W.: A modal contrastive logic: The logic of ’but’. Annals of Mathematics and Arlificial Intelligence 17, 291–313 (1996)zbMATHCrossRefGoogle Scholar
  2. 2.
    Francez, N.: Contrastive logic. Logic Journal of the IGPL 3(5), 725–744 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    McGill, A.L., Klein, J.G.: Counterfactual and contrastive reasoning in causal judgment. Journal of Personality and Social Psychology (64), 897–905 (1993)CrossRefGoogle Scholar
  4. 4.
    Fang, J., Huang, Z., van Frank, H.: Contrastive reasoning with inconsistent ontologies. In: Proceedings of 2011 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2011), pp. 191–194 (2011)Google Scholar
  5. 5.
    Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Proceedings of IJCAI 2005, pp. 454–459 (2005)Google Scholar
  6. 6.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A Framework for Handling Inconsistency in Changing Ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Huang, Z., van Harmelen, F.: Using Semantic Distances for Reasoning with Inconsistent Ontologies. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 178–194. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all Justifications of OWL DL Entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Horridge, M., Parsia, B., Sattler, U.: Explaining Inconsistencies in OWL Ontologies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 124–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \(\mathcal{EL}^+\). In: KR-MED 2008. CEUR-WS, vol. 410 (2008)Google Scholar
  11. 11.
    Du, J., Shen, Y.D.: Computing minimum cost diagnoses to repair populated dl-based ontologies. In: WWW, pp. 565–574 (2008)Google Scholar
  12. 12.
    Du, J., Qi, G.: Decomposition-Based Optimization for Debugging of Inconsistent OWL DL Ontologies. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS, vol. 6291, pp. 88–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies, negations and changes in ontologies. In: Proc. of AAAI 2006, pp. 1295–1300 (2006)Google Scholar
  14. 14.
    Brewka, G.: Preferred subtheories: An extended logical framework for default reasoning. In: Proceedings of IJCAI 1989, pp. 1043–1048 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jun Fang
    • 1
  • Zhisheng Huang
    • 2
  • Frank van Harmelen
    • 2
  1. 1.School of AutomationNorthwestern Polytechnical UniversityChina
  2. 2.Department of Computer ScienceVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations