Some Consideration of SIRMs Connected Fuzzy Inference Model with Functional Weights

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 16)

Abstract

This paper discusses the SIRMs (Single-Input Rule Modules) connected fuzzy inference model with functional weights (SIRMs model with FW). The SIRMs model with FWconsists of a number of groups of simple fuzzy if-then rules with only a single attribute in the antecedent part. The final outputs of conventional SIRMs model are obtained by summarizing product of the functional weight and inference result from a rule module. In the SIRMs model of the paper, we use square functional weights, and compare with the conventional model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nakashima, T., Seki, H.: A Study on SIRMs models with linear functional weights. In: Proc. 12th International Symposium on Advanced Intelligent Systems (ISIS 2011), pp. 224–226 (2011)Google Scholar
  2. 2.
    Seki, H., Ishii, H., Mizumoto, M.: On the generalization of single input rule modules connected type fuzy reasoning method. IEEE Trans. Fuzzy Systems 16, 1180–1187 (2008)CrossRefGoogle Scholar
  3. 3.
    Seki, H., Ishii, H., Mizumoto, M.: On the monotonicity of fuzzy-inference methods related to T–S inference method. IEEE Trans. Fuzzy Systems 18, 629–634 (2010)CrossRefGoogle Scholar
  4. 4.
    Seki, H., Ishii, H., Mizumoto, M.: Nonlinear identification and medical diagnosis system using functional-type SIRMs connected fuzzy inference method. International Journal of Innovative Computing, Information and Control 6, 5275–5286 (2010)Google Scholar
  5. 5.
    Seki, H., Mizumoto, M.: On the equivalence conditions of fuzzy inference methods—part 1: basic concept and definition. IEEE Trans. Fuzzy Systems 19, 1097–1106 (2011)CrossRefGoogle Scholar
  6. 6.
    Yi, J., Yubazaki, N., Hirota, K.: Stabilization control of seriestype double inverted pendulum systems using the SIRMs dynamically connected fuzzy inference model. Artificial Intelligence in Engineering 15, 297–308 (2001)CrossRefGoogle Scholar
  7. 7.
    Yi, J., Yubazaki, N., Hirota, K.: Upswing and stabilization control of inverted pendulum system based on the SIRMs dynamically connected fuzzy inference model. Fuzzy Sets and Systems 122, 139–152 (2001)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Yi, J., Yubazaki, N., Hirota, K.: A new fuzzy controller for stabilization of parallel-type double inverted pendulum system. Fuzzy Sets and Systems 126, 105–119 (2002)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Yi, J., Yubazaki, N., Hirota, K.: A proposal of SIRMs dynamically connected fuzzy inference model for plural input fuzzy control. Fuzzy Sets and Systems 125, 79–92 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Yi, J., Yubazaki, N., Hirota, K.: Anti-swing and positioning control of overhead traveling crane. Inf. Sci. 155, 19–42 (2002)CrossRefGoogle Scholar
  11. 11.
    Yu, W., Li, X.: Fuzzy identification using fuzzy neural networks with stable learning algorithms. IEEE Trans. Fuzzy Systems 12, 411–420 (2004)CrossRefGoogle Scholar
  12. 12.
    Yubazaki, N., Yi, J., Hirota, K.: SIRMs (Single Input Rule Modules) connected fuzzy inference model. Journal of Advanced Computational Intelligence and Intelligent Informatics 1, 23–30 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Kwansei Gakuin UniversityHyogoJapan
  2. 2.Osaka Prefecture UniversitySakaiJapan

Personalised recommendations