Interactive Grammars: Toward Perception Based Computing

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 16)

Abstract

We present a general scheme of interaction and we discuss the role of interactions in modeling of perception processes. We use information systems as a starting point for perception modeling, i.e., modeling of the process of understanding of sensory measurements. The novelty of the paper is an attempt to present the perception process by means of interactive grammars.

Keywords

interactive computing interactive information systems interactive tables rough sets granular computing wisdom technology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbib, M.A.: The Metaphorical Brain 2: Neural Networks and Beyond. Willey & Sons (1989)Google Scholar
  2. 2.
    Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems. Cambridge University Press (1997)Google Scholar
  3. 3.
    Bazan, J.G.: Hierarchical Classifiers for Complex Spatio-Temporal Concepts. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 474–750. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Goldin, D., Smolka, S., Wegner, P. (eds.): Interactive Computation: The New Paradigm. Springer, Heidelberg (2006)MATHGoogle Scholar
  5. 5.
    Jankowski, A., Skowron, A.: Wisdom Technology: A Rough-Granular Approach. In: Marciniak, M., Mykowiecka, A. (eds.) Bolc Festschrift. LNCS, vol. 5070, pp. 3–41. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman (1982)Google Scholar
  7. 7.
    Nguyen, S.H., Bazan, J.G., Skowron, A., Nguyen, H.S.: Layered Learning for Concept Synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Nguyen, T.T., Skowron, A.: Rough-Granular Computing in Human-Centric Information Processing. In: Bargiela, A., Pedrycz, W. (eds.) Human-Centric Information Processing Through Granular Modelling. SCI, vol. 182, pp. 1–30. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Noë, A.: Action in Perception. MIT Press (2004)Google Scholar
  10. 10.
    Pawlak, Z.: Information Systems – theoretical foundation. Information Systems 6, 205–218 (1981)MATHCrossRefGoogle Scholar
  11. 11.
    Pawlak, Z.: Rough sets. International Journal of Computing and Information Sciences 18, 341–356 (1982)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pawlak, Z.: Rough sets. In: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers (1991)Google Scholar
  13. 13.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Science 177, 3–27 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons (2008)Google Scholar
  15. 15.
    Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the AMS 50(5), 537–544 (2003)MathSciNetMATHGoogle Scholar
  16. 16.
    Skowron, A., Stepaniuk, J.: Hierarchical modelling in searching for complex patterns: constrained sums of information systems. Journal of Experimentaland Theoretical Artificial Intelligence 17(1-2), 83–102 (2005)MATHCrossRefGoogle Scholar
  17. 17.
    Skowron, A., Wasilewski, P.: Information Systems in Modeling Interactive Computations on Granules. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 730–739. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Skowron, A., Wasilewski, P.: An Introduction to Perception Based Computing. In: Kim, T.-H., Lee, Y.-H., Kang, B.-H., Ślęzak, D. (eds.) FGIT 2010. LNCS, vol. 6485, pp. 12–25. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Skowron, A., Wasilewski, P.: Information systems in modeling interactive computations on granules. Theoretical Computer Science 412(42), 5939–5959 (2011)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Skowron, A., Wasilewski, P.: Toward interactive rough–granular computing. Control & Cybernetics 40(2), 1–23 (2011)Google Scholar
  21. 21.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)Google Scholar
  22. 22.
  23. 23.
    Vapnik, V.: Statisctical Learning Theory. John Wiley & Sons (1998)Google Scholar
  24. 24.
    Vapnik, V., Gilad-Bachrach, R.: Learning Has Just Started: an interview with Prof. Vladimir Vapnik (2008), http://learningtheory.org
  25. 25.
    Zadeh, L.A.: From computing with numbers to computing with words – from manipulation of measurements to manipulation of perceptions. IEEE Transactions on Circuits and Systems 45, 105–119 (1999)MathSciNetGoogle Scholar
  26. 26.
    Zadeh, L.A.: A new direction in AI-toward a computational theory of perceptions. AI Magazine 22(1), 73–84 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WarsawWarsawPoland
  2. 2.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations