Advertisement

Intelligent Machine Homicide

Breaking Cryptographic Devices Using Support Vector Machines
  • Annelie Heuser
  • Michael Zohner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7275)

Abstract

In this contribution we propose the so-called SVM attack, a profiling based side channel attack, which uses the machine learning algorithm support vector machines (SVM) in order to recover a cryptographic secret. We compare the SVM attack to the template attack by evaluating the number of required traces in the attack phase to achieve a fixed guessing entropy. In order to highlight the benefits of the SVM attack, we perform the comparison for power traces with a varying noise level and vary the size of the profiling base. Our experiments indicate that due to the generalization of SVM the SVM attack is able to recover the key using a smaller profiling base than the template attack. Thus, the SVM attack counters the main drawback of the template attack, i.e. a huge profiling base.

Keywords

Support Vector Machine Power Consumption Side Channel High Noise Level Radial Basis Function Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template Attacks in Principal Subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), http://www.csie.ntu.edu.tw/~cjlin/libsvm Google Scholar
  3. 3.
    Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Int. Res. 2, 263–286 (1995), http://dl.acm.org/citation.cfm?id=1622826.1622834 zbMATHGoogle Scholar
  5. 5.
    Elaabid, M.A., Guilley, S., Hoogvorst, P.: Template attacks with a power model. IACR Cryptology ePrint Archive 2007, 443 (2007)Google Scholar
  6. 6.
    Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic Methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hastie, T., Tibshirani, R.: Classification by pairwise coupling (1998)Google Scholar
  8. 8.
    Hospodar, G., Mulder, E.D., Gierlichs, B., Verbauwhede, I., Vandewalle, J.: Least square support vector machines for side-channel analysis. In: Constructive Side-Channel Analysis and Secure Design, COSADE (2011)Google Scholar
  9. 9.
    Kasper, M., Schindler, W., Stöttinger, M.: A stochastic method for security evaluation of cryptographic fpga implementations. In: IEEE International Conference on Field-Programmable Technology (FPT 2010), pp. 146–154. IEEE Press (December 2010)Google Scholar
  10. 10.
    Kiely, T., Gielen, G.: Performance modeling of analog integrated circuits using least-squares support vector machines. In: Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, vol. 1, pp. 448–453 (February 2004)Google Scholar
  11. 11.
    Kreßel, U.H.G.: Pairwise classification and support vector machines, pp. 255–268. MIT Press, Cambridge (1999), http://dl.acm.org/citation.cfm?id=299094.299108 Google Scholar
  12. 12.
    Lemke-Rust, K., Paar, C.: Analyzing Side Channel Leakage of Masked Implementations with Stochastic Methods. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 454–468. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based on machine learning. In: Constructive Side-Channel Analysis and Secure Design, COSADE (2011)Google Scholar
  14. 14.
    Mohamed, M.S.E., Bulygin, S., Zohner, M., Heuser, A., Walter, M.: Improved algebraic side-channel attack on aes. Cryptology ePrint Archive, Report 2012/084 (2012)Google Scholar
  15. 15.
    Rechberger, C., Oswald, E.: Practical Template Attacks. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000), http://dl.acm.org/citation.cfm?id=1139689.1139691 CrossRefGoogle Scholar
  18. 18.
    Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  19. 19.
    Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks (extended version). Cryptology ePrint Archive, Report 2006/139 (2006)Google Scholar
  20. 20.
    Weston, J., Watkins, C.: Multi-class support vector machines (1998)Google Scholar
  21. 21.
    Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5, 975–1005 (2003)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Annelie Heuser
    • 1
    • 2
  • Michael Zohner
    • 1
    • 2
  1. 1.Technische Universität DarmstadtGermany
  2. 2.Center for Advanced Security Research Darmstadt (CASED)Germany

Personalised recommendations