Advertisement

Equilibrium Fluctuations of the Density Field

  • Tomasz Komorowski
  • Claudio Landim
  • Stefano Olla
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 345)

Abstract

The techniques presented in the first part of the book have a wide range of applications. They have been used, for instance, to prove the hydrodynamic limit of non-gradient interacting particle systems. To illustrate this fact, we depart in this chapter from the main stream of the book and consider the fluctuations of a scalar random field instead of the fluctuations of a particle or the fluctuations of an additive functional. In this chapter, we examine the equilibrium space-time fluctuations of the density field of simple exclusion processes. As the dynamics conserve the total number of particles, the fluctuations of the density field evolve in a longer time scale than the other fluctuation fields, yielding to an autonomous equation in a proper scaling limit.

The fluctuation–dissipation theorem, which is the main step in the proof of the fluctuations of the density field, is the subject of this chapter and uses the methods presented in the first part of the book.

Keywords

Fourier Coefficient Density Field Class Particle Exclusion Process Hydrodynamic Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. van Beijeren H, Kutner R, Spohn H (1985) Excess noise for driven diffusive systems. Phys Rev Lett 54:2026–2029 MathSciNetCrossRefGoogle Scholar
  2. Benois O, Esposito R, Marra R (2003) Equilibrium fluctuations for lattice gases. Ann Inst Henri Poincaré Probab Stat 39(5):743–777 MathSciNetzbMATHCrossRefGoogle Scholar
  3. Brox T, Rost H (1984) Equilibrium fluctuations of stochastic particle systems: the role of conserved quantities. Ann Probab 12(3):742–759 MathSciNetzbMATHCrossRefGoogle Scholar
  4. Chang CC (1994) Equilibrium fluctuations of gradient reversible particle systems. Probab Theory Relat Fields 100(3):269–283 zbMATHCrossRefGoogle Scholar
  5. Chang CC, Yau HT (1992) Fluctuations of one-dimensional Ginzburg-Landau models in nonequilibrium. Commun Math Phys 145(2):209–234 MathSciNetzbMATHCrossRefGoogle Scholar
  6. Chang CC, Landim C, Olla S (2001) Equilibrium fluctuations of asymmetric simple exclusion processes in dimension d≥3. Probab Theory Relat Fields 119(3):381–409 MathSciNetzbMATHCrossRefGoogle Scholar
  7. De Masi A, Presutti E, Spohn H, Wick WD (1986) Asymptotic equivalence of fluctuation fields for reversible exclusion processes with speed change. Ann Probab 14(2):409–423 MathSciNetzbMATHCrossRefGoogle Scholar
  8. Esposito R, Marra R, Yau HT (1994) Diffusive limit of asymmetric simple exclusion. Rev Math Phys 6(5A):1233–1267. Special issue dedicated to Elliott H Lieb MathSciNetzbMATHCrossRefGoogle Scholar
  9. Esposito R, Marra R, Yau HT (1996) Navier-Stokes equations for stochastic particle systems on the lattice. Commun Math Phys 182(2):395–456 MathSciNetzbMATHCrossRefGoogle Scholar
  10. Faggionato A, Martinelli F (2003) Hydrodynamic limit of a disordered lattice gas. Probab Theory Relat Fields 127(4):535–608 MathSciNetzbMATHCrossRefGoogle Scholar
  11. Ferrari PL, Spohn H (2006) Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Commun Math Phys 265(1):1–44 MathSciNetzbMATHCrossRefGoogle Scholar
  12. Kipnis C, Landim C (1999) Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol 320. Springer, Berlin zbMATHCrossRefGoogle Scholar
  13. Landim C, Yau HT (1997) Fluctuation-dissipation equation of asymmetric simple exclusion processes. Probab Theory Relat Fields 108(3):321–356 MathSciNetzbMATHCrossRefGoogle Scholar
  14. Landim C, Olla S, Yau HT (1996) Some properties of the diffusion coefficient for asymmetric simple exclusion processes. Ann Probab 24(4):1779–1808 MathSciNetzbMATHCrossRefGoogle Scholar
  15. Landim C, Olla S, Yau HT (1997) First-order correction for the hydrodynamic limit of asymmetric simple exclusion processes in dimension d≥3. Commun Pure Appl Math 50(2):149–203 MathSciNetCrossRefGoogle Scholar
  16. Landim C, Olla S, Varadhan SRS (2004a) On viscosity and fluctuation-dissipation in exclusion processes. J Stat Phys 115(1–2):323–363 MathSciNetzbMATHCrossRefGoogle Scholar
  17. Landim C, Quastel J, Salmhofer M, Yau HT (2004b) Superdiffusivity of asymmetric exclusion process in dimensions one and two. Commun Math Phys 244(3):455–481 MathSciNetzbMATHCrossRefGoogle Scholar
  18. Landim C, Milanés A, Olla S (2008) Stationary and nonequilibrium fluctuations in boundary driven exclusion processes. Markov Process Relat Fields 14(2):165–184 zbMATHGoogle Scholar
  19. Liggett TM (1985) Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol 276. Springer, New York zbMATHCrossRefGoogle Scholar
  20. Lu SL (1994) Equilibrium fluctuations of a one-dimensional nongradient Ginzburg-Landau model. Ann Probab 22(3):1252–1272 MathSciNetzbMATHCrossRefGoogle Scholar
  21. Olla S, Tremoulet C (2003) Equilibrium fluctuations for interacting Ornstein-Uhlenbeck particles. Commun Math Phys 233(3):463–491 MathSciNetzbMATHGoogle Scholar
  22. Quastel J (1992) Diffusion of color in the simple exclusion process. Commun Pure Appl Math 45(6):623–679 MathSciNetzbMATHCrossRefGoogle Scholar
  23. Quastel J (2006) Bulk diffusion in a system with site disorder. Ann Probab 34(5):1990–2036 MathSciNetzbMATHCrossRefGoogle Scholar
  24. Quastel J, Valko B (2007) t 1/3 superdiffusivity of finite-range asymmetric exclusion processes on ℤ. Commun Math Phys 273(2):379–394 MathSciNetzbMATHCrossRefGoogle Scholar
  25. Ravishankar K (1992) Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in Z d. Stoch Process Appl 42(1):31–37 MathSciNetzbMATHCrossRefGoogle Scholar
  26. Sasada M (2010) Hydrodynamic limit for two-species exclusion processes. Stoch Process Appl 120(4):494–521 MathSciNetzbMATHCrossRefGoogle Scholar
  27. Sellami S (1999) Equilibrium density fluctuations of a one-dimensional non-gradient reversible model: the generalized exclusion process. Markov Process Relat Fields 5(1):21–51 MathSciNetzbMATHGoogle Scholar
  28. Sethuraman S (2003) An equivalence of H −1 norms for the simple exclusion process. Ann Probab 31(1):35–62 MathSciNetzbMATHCrossRefGoogle Scholar
  29. Spohn H (1986) Equilibrium fluctuations for interacting Brownian particles. Commun Math Phys 103(1):1–33 MathSciNetzbMATHCrossRefGoogle Scholar
  30. Varadhan SRS (1994a) Nonlinear diffusion limit for a system with nearest neighbor interactions II. In: Asymptotic problems in probability theory, stochastic models and diffusions on fractals. Pitman res notes math ser, vol 283. Wiley, New York, pp 75–128 Google Scholar
  31. Yau HT (2004) (logt)2/3 law of the two dimensional asymmetric simple exclusion process. Ann Math (2) 159(1):377–405 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomasz Komorowski
    • 1
    • 2
  • Claudio Landim
    • 3
    • 4
  • Stefano Olla
    • 5
  1. 1.Institute of MathematicsMaria Curie-Skłodowska UniversityLublinPoland
  2. 2.Institute of MathematicsPolish Academy of SciencesWarsawPoland
  3. 3.Instituto de Matemática (IMPA)Rio de JaneiroBrazil
  4. 4.CNRS UMR 6085Université de RouenSaint-Étienne-du-RouvrayFrance
  5. 5.CEREMADE, CNRS UMR 7534Université Paris-DauphineParisFrance

Personalised recommendations