A Warming-Up Example

  • Tomasz Komorowski
  • Claudio Landim
  • Stefano Olla
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 345)


We introduce here, in the simplest possible context, some of the ideas that will appear recurrently in the rest of the book. We first prove the classical central limit theorem for a Markov chain {X j } j≥0 on a countable state space, with an ergodic measure π and transition operator P. Under the condition that (IP)−1 VL 2(π), we prove that \(\sum_{i=1}^{N} V(X_{i})/\sqrt{N}\) converges in law to a Gaussian variable with finite variance. Then, after reviewing a general central limit theorem for ergodic martingales, we prove that if π is reversible, (IP)−1/2 VL 2(π) is sufficient in order to obtain the central limit theorem. This is the central point of the Kipnis–Varadhan theorem. Notice that in this context this is also a necessary condition in order to have finite limit variance. We conclude the chapter examining the properties of the space of functions with finite limit variance, denoted, and some explicit examples.


Markov Chain Probability Measure Central Limit Theorem Poisson Equation Additive Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Billingsley P (1995) Probability and measure. Wiley series in probability and mathematical statistics: probability and mathematical statistics, 3rd edn. Wiley, New York. A Wiley-Interscience Publication zbMATHGoogle Scholar
  2. Breiman L (1968) Probability. Addison-Wesley, Reading zbMATHGoogle Scholar
  3. De Masi A, Ferrari PA, Goldstein S, Wick WD (1989) An invariance principle for reversible Markov processes. Applications to random motions in random environments. J Stat Phys 55(3–4):787–855 zbMATHCrossRefGoogle Scholar
  4. Derriennic Y, Lin M (2001a) The central limit theorem for Markov chains with normal transition operators, started at a point. Probab Theory Relat Fields 119(4):508–528 MathSciNetzbMATHCrossRefGoogle Scholar
  5. Derriennic Y, Lin M (2001b) Fractional Poisson equations and ergodic theorems for fractional coboundaries. Isr J Math 123:93–130 MathSciNetzbMATHCrossRefGoogle Scholar
  6. Derriennic Y, Lin M (2003) The central limit theorem for Markov chains started at a point. Probab Theory Relat Fields 125(1):73–76 MathSciNetzbMATHCrossRefGoogle Scholar
  7. Doeblin W (1938) Sur deux problèmes de M Kolmogoroff concernant les chaînes dénombrables. Bull Soc Math Fr 66:210–220 MathSciNetGoogle Scholar
  8. Durrett R (1996) Probability: theory and examples, 2nd edn. Duxbury Press, Belmont Google Scholar
  9. Ethier SN, Kurtz TG (1986) Markov processes: characterization and convergence. Wiley series in probability and mathematical statistics: probability and mathematical statistics. Wiley, New York zbMATHCrossRefGoogle Scholar
  10. Goldstein S (1995) Antisymmetric functionals of reversible Markov processes. Ann Inst Henri Poincaré Probab Stat 31(1):177–190 zbMATHGoogle Scholar
  11. Gordin MI (1969) The central limit theorem for stationary processes. Dokl Akad Nauk SSSR 188:739–741 MathSciNetGoogle Scholar
  12. Gordin MI, Lifšic BA (1978) Central limit theorem for stationary Markov processes. Dokl Akad Nauk SSSR 239(4):766–767 MathSciNetGoogle Scholar
  13. Häggström O, Rosenthal JS (2007) On variance conditions for Markov chain CLTs. Electron Commun Probab 12:454–464 (electronic) zbMATHCrossRefGoogle Scholar
  14. Kipnis C, Varadhan SRS (1986) Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun Math Phys 104(1):1–19 MathSciNetzbMATHCrossRefGoogle Scholar
  15. Kozlov SM (1985) The averaging method and walks in inhomogeneous environments. Usp Mat Nauk 40(2(242)):61–120, 238 zbMATHGoogle Scholar
  16. Lawler GF (1982) Weak convergence of a random walk in a random environment. Commun Math Phys 87(1):81–87 MathSciNetzbMATHCrossRefGoogle Scholar
  17. Maxwell M, Woodroofe M (2000) Central limit theorems for additive functionals of Markov chains. Ann Probab 28(2):713–724 MathSciNetzbMATHCrossRefGoogle Scholar
  18. Nagaev SV (1957) Some limit theorems for stationary Markov chains. Teor Veroâtn Ee Primen 2:389–416 MathSciNetGoogle Scholar
  19. Newman CM (1980) Normal fluctuations and the FKG inequalities. Commun Math Phys 74(2):119–128 zbMATHCrossRefGoogle Scholar
  20. Newman CM (1983) A general central limit theorem for FKG systems. Commun Math Phys 91(1):75–80 zbMATHCrossRefGoogle Scholar
  21. Newman CM (1984) Asymptotic independence and limit theorems for positively and negatively dependent random variables. In: Inequalities in statistics and probability, Lincoln, NE, 1982. IMS lect notes monogr ser, vol 5. Inst Math Stat, Hayward, pp 127–140 CrossRefGoogle Scholar
  22. Newman CM, Wright AL (1981) An invariance principle for certain dependent sequences. Ann Probab 9(4):671–675 MathSciNetzbMATHCrossRefGoogle Scholar
  23. Newman CM, Wright AL (1982) Associated random variables and martingale inequalities. Z Wahrscheinlichkeitstheor Verw Geb 59(3):361–371 MathSciNetzbMATHCrossRefGoogle Scholar
  24. Ouchti L, Volný D (2008) A conditional CLT which fails for ergodic components. J Theor Probab 21(3):687–703 zbMATHCrossRefGoogle Scholar
  25. Peligrad M, Utev S (2005) A new maximal inequality and invariance principle for stationary sequences. Ann Probab 33(2):798–815 MathSciNetzbMATHCrossRefGoogle Scholar
  26. Rassoul-Agha F, Seppäläinen T (2008) An almost sure invariance principle for additive functionals of Markov chains. Stat Probab Lett 78(7):854–860 zbMATHCrossRefGoogle Scholar
  27. Riesz F, Sz.-Nagy B (1990) Functional analysis. Dover books on advanced mathematics. Dover, New York. Translated from the second French edition by Leo F Boron, reprint of the 1955 original zbMATHGoogle Scholar
  28. Soardi PM (1994) Potential theory on infinite networks. Lecture notes in math, vol 1590. Springer, Berlin zbMATHGoogle Scholar
  29. Varadhan SRS (2001) Probability theory. Courant lecture notes in mathematics, vol 7. New York University, Courant Institute of Mathematical Sciences, New York zbMATHGoogle Scholar
  30. Whitt W (2007) Proofs of the martingale FCLT. Probab Surv 4:268–302 MathSciNetzbMATHCrossRefGoogle Scholar
  31. Wu WB, Woodroofe M (2004) Martingale approximations for sums of stationary processes. Ann Probab 32(2):1674–1690 MathSciNetzbMATHCrossRefGoogle Scholar
  32. Yosida K (1995) Functional analysis. Classics in mathematics. Springer, Berlin. Reprint of the sixth 1980 edition Google Scholar
  33. Zhao O, Woodroofe M (2008a) Law of the iterated logarithm for stationary processes. Ann Probab 36(1):127–142 MathSciNetzbMATHCrossRefGoogle Scholar
  34. Zhao O, Woodroofe M (2008b) On martingale approximations. Ann Appl Probab 18(5):1831–1847 MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomasz Komorowski
    • 1
    • 2
  • Claudio Landim
    • 3
    • 4
  • Stefano Olla
    • 5
  1. 1.Institute of MathematicsMaria Curie-Skłodowska UniversityLublinPoland
  2. 2.Institute of MathematicsPolish Academy of SciencesWarsawPoland
  3. 3.Instituto de Matemática (IMPA)Rio de JaneiroBrazil
  4. 4.CNRS UMR 6085Université de RouenSaint-Étienne-du-RouvrayFrance
  5. 5.CEREMADE, CNRS UMR 7534Université Paris-DauphineParisFrance

Personalised recommendations