Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 345))

Abstract

We introduce here, in the simplest possible context, some of the ideas that will appear recurrently in the rest of the book. We first prove the classical central limit theorem for a Markov chain {X j } j≥0 on a countable state space, with an ergodic measure π and transition operator P. Under the condition that (IP)−1 VL 2(π), we prove that \(\sum_{i=1}^{N} V(X_{i})/\sqrt{N}\) converges in law to a Gaussian variable with finite variance. Then, after reviewing a general central limit theorem for ergodic martingales, we prove that if π is reversible, (IP)−1/2 VL 2(π) is sufficient in order to obtain the central limit theorem. This is the central point of the Kipnis–Varadhan theorem. Notice that in this context this is also a necessary condition in order to have finite limit variance. We conclude the chapter examining the properties of the space of functions with finite limit variance, denoted, and some explicit examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Billingsley P (1995) Probability and measure. Wiley series in probability and mathematical statistics: probability and mathematical statistics, 3rd edn. Wiley, New York. A Wiley-Interscience Publication

    MATH  Google Scholar 

  • Breiman L (1968) Probability. Addison-Wesley, Reading

    MATH  Google Scholar 

  • De Masi A, Ferrari PA, Goldstein S, Wick WD (1989) An invariance principle for reversible Markov processes. Applications to random motions in random environments. J Stat Phys 55(3–4):787–855

    Article  MATH  Google Scholar 

  • Derriennic Y, Lin M (2001a) The central limit theorem for Markov chains with normal transition operators, started at a point. Probab Theory Relat Fields 119(4):508–528

    Article  MathSciNet  MATH  Google Scholar 

  • Derriennic Y, Lin M (2001b) Fractional Poisson equations and ergodic theorems for fractional coboundaries. Isr J Math 123:93–130

    Article  MathSciNet  MATH  Google Scholar 

  • Derriennic Y, Lin M (2003) The central limit theorem for Markov chains started at a point. Probab Theory Relat Fields 125(1):73–76

    Article  MathSciNet  MATH  Google Scholar 

  • Doeblin W (1938) Sur deux problèmes de M Kolmogoroff concernant les chaînes dénombrables. Bull Soc Math Fr 66:210–220

    MathSciNet  Google Scholar 

  • Durrett R (1996) Probability: theory and examples, 2nd edn. Duxbury Press, Belmont

    Google Scholar 

  • Ethier SN, Kurtz TG (1986) Markov processes: characterization and convergence. Wiley series in probability and mathematical statistics: probability and mathematical statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Goldstein S (1995) Antisymmetric functionals of reversible Markov processes. Ann Inst Henri Poincaré Probab Stat 31(1):177–190

    MATH  Google Scholar 

  • Gordin MI (1969) The central limit theorem for stationary processes. Dokl Akad Nauk SSSR 188:739–741

    MathSciNet  Google Scholar 

  • Gordin MI, Lifšic BA (1978) Central limit theorem for stationary Markov processes. Dokl Akad Nauk SSSR 239(4):766–767

    MathSciNet  Google Scholar 

  • Häggström O, Rosenthal JS (2007) On variance conditions for Markov chain CLTs. Electron Commun Probab 12:454–464 (electronic)

    Article  MATH  Google Scholar 

  • Kipnis C, Varadhan SRS (1986) Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun Math Phys 104(1):1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Kozlov SM (1985) The averaging method and walks in inhomogeneous environments. Usp Mat Nauk 40(2(242)):61–120, 238

    MATH  Google Scholar 

  • Lawler GF (1982) Weak convergence of a random walk in a random environment. Commun Math Phys 87(1):81–87

    Article  MathSciNet  MATH  Google Scholar 

  • Maxwell M, Woodroofe M (2000) Central limit theorems for additive functionals of Markov chains. Ann Probab 28(2):713–724

    Article  MathSciNet  MATH  Google Scholar 

  • Nagaev SV (1957) Some limit theorems for stationary Markov chains. Teor Veroâtn Ee Primen 2:389–416

    MathSciNet  Google Scholar 

  • Newman CM (1980) Normal fluctuations and the FKG inequalities. Commun Math Phys 74(2):119–128

    Article  MATH  Google Scholar 

  • Newman CM (1983) A general central limit theorem for FKG systems. Commun Math Phys 91(1):75–80

    Article  MATH  Google Scholar 

  • Newman CM (1984) Asymptotic independence and limit theorems for positively and negatively dependent random variables. In: Inequalities in statistics and probability, Lincoln, NE, 1982. IMS lect notes monogr ser, vol 5. Inst Math Stat, Hayward, pp 127–140

    Chapter  Google Scholar 

  • Newman CM, Wright AL (1981) An invariance principle for certain dependent sequences. Ann Probab 9(4):671–675

    Article  MathSciNet  MATH  Google Scholar 

  • Newman CM, Wright AL (1982) Associated random variables and martingale inequalities. Z Wahrscheinlichkeitstheor Verw Geb 59(3):361–371

    Article  MathSciNet  MATH  Google Scholar 

  • Ouchti L, Volný D (2008) A conditional CLT which fails for ergodic components. J Theor Probab 21(3):687–703

    Article  MATH  Google Scholar 

  • Peligrad M, Utev S (2005) A new maximal inequality and invariance principle for stationary sequences. Ann Probab 33(2):798–815

    Article  MathSciNet  MATH  Google Scholar 

  • Rassoul-Agha F, Seppäläinen T (2008) An almost sure invariance principle for additive functionals of Markov chains. Stat Probab Lett 78(7):854–860

    Article  MATH  Google Scholar 

  • Riesz F, Sz.-Nagy B (1990) Functional analysis. Dover books on advanced mathematics. Dover, New York. Translated from the second French edition by Leo F Boron, reprint of the 1955 original

    MATH  Google Scholar 

  • Soardi PM (1994) Potential theory on infinite networks. Lecture notes in math, vol 1590. Springer, Berlin

    MATH  Google Scholar 

  • Varadhan SRS (2001) Probability theory. Courant lecture notes in mathematics, vol 7. New York University, Courant Institute of Mathematical Sciences, New York

    MATH  Google Scholar 

  • Whitt W (2007) Proofs of the martingale FCLT. Probab Surv 4:268–302

    Article  MathSciNet  MATH  Google Scholar 

  • Wu WB, Woodroofe M (2004) Martingale approximations for sums of stationary processes. Ann Probab 32(2):1674–1690

    Article  MathSciNet  MATH  Google Scholar 

  • Yosida K (1995) Functional analysis. Classics in mathematics. Springer, Berlin. Reprint of the sixth 1980 edition

    Google Scholar 

  • Zhao O, Woodroofe M (2008a) Law of the iterated logarithm for stationary processes. Ann Probab 36(1):127–142

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao O, Woodroofe M (2008b) On martingale approximations. Ann Appl Probab 18(5):1831–1847

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Komorowski, T., Landim, C., Olla, S. (2012). A Warming-Up Example. In: Fluctuations in Markov Processes. Grundlehren der mathematischen Wissenschaften, vol 345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29880-6_1

Download citation

Publish with us

Policies and ethics