Advertisement

Monitoring Realizability

  • Rüdiger Ehlers
  • Bernd Finkbeiner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7186)

Abstract

We present a new multi-valued monitoring approach for linear-time temporal logic that classifies trace prefixes not only according to the existence of correct and erroneous continuations, but also according to the strategic power of the system and its environment to avoid or enforce a violation of the specification. We classify the monitoring status into four levels: (1) the worst case is a violation, where no continuation satisfies the specification any more; (2) unrealizable means that the environment can force the system to violate the specification; (3) realizable means that the system can enforce that the specification is satisfied; (4) the best case, fulfilled, indicates that all possible continuations satisfy the specification. Because our approach recognizes situations where the system cannot avoid a violation even though there may still be continuations in which the specification is satisfied, our approach detects errors earlier, and it detects errors that are missed by less detailed classifications. We give an asymptotically optimal construction of multi-valued monitoring automata based on parity games.

Keywords

Winning Strategy Monitoring Realizability Runtime Monitoring Nondeterministic Automaton Environment Player 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Transactions on Software Engineering and Methodology 20(4) (2011)Google Scholar
  2. 2.
    Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies. Trans. AMS (138) (1969)Google Scholar
  3. 3.
    D’Amorim, M., Roşu, G.: Efficient Monitoring of ω-Languages. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Ehlers, R.: Minimising Deterministic Büchi Automata Precisely Using SAT Solving. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 326–332. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Ehlers, R.: Short Witnesses and Accepting Lassos in ω-Automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 261–272. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Finkbeiner, B., Kuhtz, L.: Monitor Circuits for LTL with Bounded and Unbounded Future. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 60–75. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Formal Methods in System Design 24(2), 101–127 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite automaton. In: Kohavi, Z. (ed.) The Theory of Machines and Computations, pp. 189–196. Academic Press (1971)Google Scholar
  9. 9.
    Jurdziński, M.: Small Progress Measures for Solving Parity Games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods in System Design 19(3), 291–314 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Küsters, R.: 6 Memoryless Determinacy of Parity Games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 95–106. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Müller, S.M., Paul, W.J.: Computer architecture: complexity and correctness. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  14. 14.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)Google Scholar
  15. 15.
    Pnueli, A., Rosner, R.: On the Synthesis of an Asynchronous Reactive Module. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  16. 16.
    Pnueli, A., Zaks, A., Zuck, L.D.: Monitoring interfaces for faults. Electr. Notes Theor. Comput. Sci. 144(4), 73–89 (2006)CrossRefGoogle Scholar
  17. 17.
    Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: SIS: A system for sequential circuit synthesis. Technical Report UCB/ERL M92/41, EECS Department, University of California, Berkeley (1992)Google Scholar
  18. 18.
    Y., M., Vardi, T.W.: Automata: from logics to algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata: History and Perspectives. Texts in Logic and Games, vol. (2), pp. 629–736. Amsterdam University Press (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rüdiger Ehlers
    • 1
  • Bernd Finkbeiner
    • 1
  1. 1.Reactive Systems GroupSaarland UniversitySaarbrückenGermany

Personalised recommendations