Skip to main content

Predicting Concurrency Failures in the Generalized Execution Traces of x86 Executables

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7186))

Abstract

In this tutorial, we first provide a brief overview of the latest development in SMT based symbolic predictive analysis techniques and their applications to runtime verification. We then present a unified runtime analysis platform for detecting concurrency related program failures in the x86 executables of shared-memory multithreaded applications. Our platform supports efficient monitoring and easy customization of a wide range of execution trace generalization techniques. Many of these techniques have been successfully incorporated into our in-house verification tools, including BEST (Binary instrumentation based Error-directed Symbolic Testing), which can detect concurrency related errors such as deadlocks and race conditions, generate failure-triggering thread schedules, and provide the visual mapping between runtime events and their program code to help debugging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross, P.E.: Top 11 technologies of the decade. IEEE Spectrum 48(1), 27–63 (2011)

    Article  Google Scholar 

  2. Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 378–391 (2005)

    Google Scholar 

  3. Boehm, H.J., Adve, S.V.: Foundations of the c++ concurrency memory model. In: ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 68–78 (2008)

    Google Scholar 

  4. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J., Hazelwood, K.: PIN: Building customized program analysis tools with dynamic instrumentation. In: ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 190–200. ACM, New York (2005)

    Chapter  Google Scholar 

  5. Wang, C., Kundu, S., Ganai, M., Gupta, A.: Symbolic Predictive Analysis for Concurrent Programs. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 256–272. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Wang, C., Chaudhuri, S., Gupta, A., Yang, Y.: Symbolic pruning of concurrent program executions. In: ACM SIGSOFT Symposium on Foundations of Software Engineering, pp. 23–32 (2009)

    Google Scholar 

  7. Wang, C., Limaye, R., Ganai, M., Gupta, A.: Trace-Based Symbolic Analysis for Atomicity Violations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 328–342. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Kundu, S., Ganai, M.K., Wang, C.: Contessa: Concurrency Testing Augmented with Symbolic Analysis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 127–131. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)

    Article  MATH  Google Scholar 

  10. Clarke, L.A.: A system to generate test data and symbolically execute programs. IEEE Trans. Software Eng. 2(3), 215–222 (1976)

    Article  Google Scholar 

  11. Sen, K., Rosu, G., Agha, G.: Runtime safety analysis of multithreaded programs. In: ACM SIGSOFT Symposium on Foundations of Software Engineering, pp. 337–346 (2003)

    Google Scholar 

  12. Xu, M., Bodík, R., Hill, M.D.: A serializability violation detector for shared-memory server programs. In: ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 1–14 (2005)

    Google Scholar 

  13. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: detecting atomicity violations via access interleaving invariants. In: Architectural Support for Programming Languages and Operating Systems, pp. 37–48 (2006)

    Google Scholar 

  14. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multithreaded programs. IEEE Trans. Software Eng. 32(2), 93–110 (2006)

    Article  Google Scholar 

  15. Chen, F., Serbanuta, T., Rosu, G.: jPredictor: a predictive runtime analysis tool for java. In: International Conference on Software Engineering, pp. 221–230 (2008)

    Google Scholar 

  16. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multithreaded programs. In: Parallel and Distributed Processing Symposium (2004)

    Google Scholar 

  17. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sound and complete dynamic atomicity checker for multithreaded programs. In: ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 293–303 (2008)

    Google Scholar 

  18. Farzan, A., Madhusudan, P.: Monitoring Atomicity in Concurrent Programs. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)

    Article  MATH  Google Scholar 

  20. Sen, K., Roşu, G., Agha, G.: Detecting Errors in Multithreaded Programs by Generalized Predictive Analysis of Executions. In: Steffen, M., Tennenholtz, M. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 211–226. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Chen, F., Roşu, G.: Parametric and Sliced Causality. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 240–253. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Sadowski, C., Freund, S.N., Flanagan, C.: SingleTrack: A Dynamic Determinism Checker for Multithreaded Programs. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 394–409. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A dynamic data race detector for multithreaded programs. ACM Trans. Comput. Syst. 15(4), 391–411 (1997)

    Article  Google Scholar 

  24. von Praun, C., Gross, T.R.: Object race detection. In: ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and Applications, pp. 70–82 (2001)

    Google Scholar 

  25. Farzan, A., Madhusudan, P.: The Complexity of Predicting Atomicity Violations. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 155–169. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Farzan, A., Madhusudan, P., Sorrentino, F.: Meta-analysis for Atomicity Violations under Nested Locking. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 248–262. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning About Threads Communicating via Locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 505–518. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Sinha, A., Malik, S., Wang, C., Gupta, A.: Predictive analysis for detecting serializability violations through trace segmentation. In: International Conference on Formal Methods and Models for Codesign (2011)

    Google Scholar 

  29. Kahlon, V., Wang, C.: Universal Causality Graphs: A Precise Happens-Before Model for Detecting Bugs in Concurrent Programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 434–449. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Ganai, M.K., Kundu, S.: Reduction of Verification Conditions for Concurrent System Using Mutually Atomic Transactions. In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 68–87. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and reproducing heisenbugs in concurrent programs. In: OSDI, pp. 267–280 (2008)

    Google Scholar 

  33. Sinha, N., Wang, C.: On interference abstractions. In: ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 423–434 (2011)

    Google Scholar 

  34. Farzan, A., Madhusudan, P.: Causal Atomicity. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 315–328. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  35. Ganai, M.K.: Scalable and precise symbolic analysis for atomicity violations. In: IEEE/ACM International Conference on Automated Software Engineering (2011)

    Google Scholar 

  36. Ganai, M.K., Arora, N., Wang, C., Gupta, A., Balakrishnan, G.: BEST: A symbolic testing tool for predicting multi-threaded program failures. In: IEEE/ACM International Conference on Automated Software Engineering (2011)

    Google Scholar 

  37. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  38. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In: Parallel and Distributed Processing Symposium, p. 286 (2003)

    Google Scholar 

  39. Godefroid, P.: Software model checking: The VeriSoft approach. Formal Methods in System Design 26(2), 77–101 (2005)

    Article  Google Scholar 

  40. Yang, Y., Chen, X., Gopalakrishnan, G.: Inspect: A runtime model checker for multithreaded C programs. Technical Report UUCS-08-004, University of Utah (2008)

    Google Scholar 

  41. Godefroid, P.: VeriSoft: A Tool for the Automatic Analysis of Concurrent Reactive Software. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 476–479. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  42. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software. In: ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 110–121 (2005)

    Google Scholar 

  43. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 14–24 (2004)

    Google Scholar 

  44. Musuvathi, M., Qadeer, S.: Partial-order reduction for context-bounded state exploration. Technical Report MSR-TR-2007-12, Microsoft Research (December 2007)

    Google Scholar 

  45. Joshi, P., Naik, M., Park, C.-S., Sen, K.: CalFuzzer: An Extensible Active Testing Framework for Concurrent Programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 675–681. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  46. Sorrentino, F., Farzan, A., Madhusudan, P.: PENELOPE: weaving threads to expose atomicity violations. In: ACM SIGSOFT Symposium on Foundations of Software Engineering, pp. 37–46 (2010)

    Google Scholar 

  47. Wang, C., Said, M., Gupta, A.: Coverage guided systematic concurrency testing. In: International Conference on Software Engineering, pp. 221–230 (2011)

    Google Scholar 

  48. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized Symbolic Execution for Model Checking and Testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  49. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: Programming Language Design and Implementation, pp. 213–223 (June 2005)

    Google Scholar 

  50. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: Network and Distributed System Security Symposium (2008)

    Google Scholar 

  51. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: ACM SIGSOFT Symposium on Foundations of Software Engineering, pp. 263–272 (2005)

    Google Scholar 

  52. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: ASE, pp. 443–446 (2008)

    Google Scholar 

  53. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation of high-coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)

    Google Scholar 

  54. Lewandowski, G., Bouvier, D.J., Chen, T.Y., McCartney, R., Sanders, K., Simon, B., VanDeGrift, T.: Commonsense understanding of concurrency: computing students and concert tickets. Commun. ACM 53, 60–70 (2010)

    Article  Google Scholar 

  55. Cadar, C., Godefroid, P., Khurshid, S., Pasareanu, C.S., Sen, K., Tillmann, N., Visser, W.: Symbolic execution for software testing in practice: preliminary assessment. In: International Conference on Software Engineering, pp. 1066–1071 (2011)

    Google Scholar 

  56. Zamfir, C., Candea, G.: Execution synthesis: a technique for automated software debugging. In: EuroSys, pp. 321–334 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, C., Ganai, M. (2012). Predicting Concurrency Failures in the Generalized Execution Traces of x86 Executables. In: Khurshid, S., Sen, K. (eds) Runtime Verification. RV 2011. Lecture Notes in Computer Science, vol 7186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29860-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29860-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29859-2

  • Online ISBN: 978-3-642-29860-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics