Advertisement

Pathways at Work: Metabolic Flux Analysis of the Industrial Cell Factory Corynebacterium glutamicum

  • Judith Becker
  • Christoph Wittmann
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 23)

Abstract

Since its discovery in the 1950s, the Gram-positive soil bacterium Corynebacterium glutamicum has turned into a biotechnological work horse. It is applied worldwide for the production of various products, including 2.5 million t/a glutamate and 1.5 million t/a lysine for the food and feed industry. From early on, the industrial demand for these amino acids strongly stimulated the creation of efficient production strains, including development of progressive techniques that allow strain optimization. With the invention of recombinant DNA technology, a targeted genetic optimization of C. glutamicum became possible. The major challenge toward successful improvement is still the prediction of beneficial optimization targets requiring detailed understanding of the underlying pathways. Hereby, metabolic flux analysis emerged as most valuable technique. Today, powerful state-of-the-art technologies available enable the study of fluxes on various levels, including screening at microliter-scale, routine strain profiling at laboratory scale, or analysis of large-scale production processes. As shown here, flux analysis has provided deep insights into the physiology of Corynebacterium glutamicum, probably the best studied microorganism on the level of metabolic fluxes today.

Keywords

Pentose Phosphate Pathway Metabolic Flux Pyruvate Carboxylase Flux Analysis Corynebacterium Glutamicum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319PubMedCrossRefGoogle Scholar
  2. Becker J, Heinzle E, Klopprogge C, Zelder O, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596PubMedCrossRefGoogle Scholar
  3. Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum-over expression and modification of G6P dehydrogenase. J Biotechnol 132:99–109PubMedCrossRefGoogle Scholar
  4. Becker J, Klopprogge C, Wittmann C (2008) Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Microb Cell Fact 7:8PubMedCrossRefGoogle Scholar
  5. Becker J, Klopprogge C, Schröder H, Wittmann C (2009) Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:7866–7869PubMedCrossRefGoogle Scholar
  6. Becker J, Buschke N, Bücker R, Wittmann C (2010) Systems level engineering of Corynebacterium glutamicum – reprogramming translational efficiency for superior production. Eng Life Sci 10:430–438CrossRefGoogle Scholar
  7. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero – design based metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159–168.PubMedCrossRefGoogle Scholar
  8. Becker J, Wittmann C (2012) Systems and synthetic metabolic engineering for amino acid production – heartbeat of industrial strain development. Curr. Opin. Biotechnol. In press. http://dx.doi.org/10.1016/j.copbio.2011.12.025
  9. Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007) Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:615–623PubMedCrossRefGoogle Scholar
  10. Chen R, Yang H (2000) A highly specific monomeric isocitrate dehydrogenase from Corynebacterium glutamicum. Arch Biochem Biophys 383:238–245PubMedCrossRefGoogle Scholar
  11. Chen Z, Landman P, Colmer TD, Adams MA (1998) Simultaneous analysis of amino and organic acids in extracts of plant leaves as tert-butyldimethylsilyl derivatives by capillary gas chromatography. Anal Biochem 259:203–211PubMedCrossRefGoogle Scholar
  12. Christensen B, Nielsen J (1999) Isotopomer analysis using GC-MS. Metab Eng 1:282–290PubMedCrossRefGoogle Scholar
  13. Cocaign-Bousquet M, Lindley ND (1995) Pyruvate overflow and carbon flux within the central metabolic pathways of Corynebacterium glutamicum during growth on lactate. Enzyme Microb Technol 17:260–267CrossRefGoogle Scholar
  14. Dauner M (2010) From fluxes and isotope labeling patterns towards in silico cells. Curr Opin Biotechnol 21(1):55–62PubMedCrossRefGoogle Scholar
  15. Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649PubMedCrossRefGoogle Scholar
  16. de Graaf AA, Mahle M, Möllney M, Wiechert W, Stahmann P, Sahm H (2000) Determination of full 13C isotopomer distributions for metabolic flux analysis using heteronuclear spin echo difference NMR spectroscopy. J Biotechnol 77:25–35PubMedCrossRefGoogle Scholar
  17. de Graaf AA, Eggeling L, Sahm H (2001) Metabolic engineering for L-lysine production by Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 73:9–29PubMedGoogle Scholar
  18. Dominguez H, Nezondet C, Lindley ND, Cocaign M (1993) Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotechnol Lett 15(5):449–454CrossRefGoogle Scholar
  19. Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102PubMedCrossRefGoogle Scholar
  20. Drysch A, El Massaoudi M, Mack C, Takors R, de Graaf AA, Sahm H (2003) Production process monitoring by serial mapping of microbial carbon flux distributions using a novel sensor reactor approach: II-13C-labeling-based metabolic flux analysis and L-lysine production. Metab Eng 5:96–107PubMedCrossRefGoogle Scholar
  21. Drysch A, El Massaoudi M, Wiechert W, de Graaf AA, Takors R (2004) Serial flux mapping of Corynebacterium glutamicum during fed-batch L-lysine production using the sensor reactor approach. Biotechnol Bioeng 85:497–505PubMedCrossRefGoogle Scholar
  22. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FLGoogle Scholar
  23. Eikmanns BJ (2005) Central metabolism: tricarboxylic acid cycle and anaplerotic reactions. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FL, pp 241–276Google Scholar
  24. El Massaoudi M, Spelthahn J, Drysch A, de Graaf A, Takors R (2003) Production process monitoring by serial mapping of microbial carbon flux distributions using a novel sensor reactor approach: I-Sensor reactor system. Metab Eng 5:86–95PubMedCrossRefGoogle Scholar
  25. Fischer E, Zamboni N, Sauer U (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem 325:308–316PubMedCrossRefGoogle Scholar
  26. Gourdon P, Baucher MF, Lindley ND, Guyonvarch A (2000) Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981–2987PubMedCrossRefGoogle Scholar
  27. Ihnen ED, Demain AL (1969) Glucose-6-phosphate dehydrogenase and its deficiency in mutants of Corynebacterium glutamicum. J Bacteriol 98:1151–1158PubMedGoogle Scholar
  28. Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35PubMedGoogle Scholar
  29. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109PubMedCrossRefGoogle Scholar
  30. Ishino S, Yamaguchi K, Shirahata K, Araki K (1984) Involvement of meso-α, ε-diaminopimelate D-dehydrogenase in lysine biosynthesis in Corynebacterium glutamicum. Agric Biol Chem 48(10):2557–2560CrossRefGoogle Scholar
  31. Iwatani S, Van Dien S, Shimbo K, Kubota K, Kageyama N, Iwahata D, Miyano H, Hirayama K, Usuda Y, Shimizu K, Matsui K (2007) Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J Biotechnol 128:93–111PubMedCrossRefGoogle Scholar
  32. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25PubMedCrossRefGoogle Scholar
  33. Kelleher JK (2001) Flux estimation using isotopic tracers: common ground for metabolic physiology and metabolic engineering. Metab Eng 3:100–110PubMedCrossRefGoogle Scholar
  34. Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70:229–239PubMedCrossRefGoogle Scholar
  35. Kiefer P, Nicolas C, Letisse F, Portais JC (2007) Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry. Anal Biochem 360:182–188PubMedCrossRefGoogle Scholar
  36. Kim HM, Heinzle E, Wittmann C (2006) Deregulation of aspartokinase by single nucleotide exchange leads to global flux rearrangement in the central metabolism of Corynebacterium glutamicum. J Microbiol Biotechnol 16:1174–1179Google Scholar
  37. Kim J, Hirasawa T, Sato Y, Nagahisa K, Furusawa C, Shimizu H (2009) Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 81:1097–1106PubMedCrossRefGoogle Scholar
  38. Kim J, Fukuda H, Hirasawa T, Nagahisa K, Nagai K, Wachi M, Shimizu H (2010) Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 86(3):911–920PubMedCrossRefGoogle Scholar
  39. Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102:583–597PubMedCrossRefGoogle Scholar
  40. Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784PubMedCrossRefGoogle Scholar
  41. Krömer JO, Bolten CJ, Heinzle E, Schröder H, Wittmann C (2008) Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Microbiology 154:3917–3930PubMedCrossRefGoogle Scholar
  42. Marx A, de Graaf A, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by Nuclear Magnetic Resonance Spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49(2):111–129PubMedCrossRefGoogle Scholar
  43. Marx A, Hans S, Möckel B, Bathe B, de Graaf AA (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197PubMedCrossRefGoogle Scholar
  44. Michal G (1999) Biochemical pathways. Wiley, New York, NYGoogle Scholar
  45. Möllney M, Wiechert W, Kownatzki D, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. Biotechnol Bioeng 66:86–103PubMedCrossRefGoogle Scholar
  46. Moritz B, Striegel K, De Graaf AA, Sahm H (2000) Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem 267:3442–3452PubMedCrossRefGoogle Scholar
  47. Nicolas C, Becker J, Sanchou L, Letisse F, Wittmann C, Portais J, Massou S (2008) Measurement of isotopic enrichments in 13C-labelled molecules by 1D selective Zero-Quantum Filtered TOCSY NMR experiments. C R Chim 11:480–485CrossRefGoogle Scholar
  48. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223PubMedCrossRefGoogle Scholar
  49. Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274PubMedCrossRefGoogle Scholar
  50. Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R (2004) Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20:1623–1633PubMedCrossRefGoogle Scholar
  51. Palsson B (2000) The challenges of in silico biology. Nat Biotechnol 18:1147–1150PubMedCrossRefGoogle Scholar
  52. Petersen S, de Graaf AA, Eggeling L, Möllney M, Wiechert W, Sahm H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J Biol Chem 275:35932–35941PubMedCrossRefGoogle Scholar
  53. Petersen S, Mack C, de Graaf AA, Riedel C, Eikmanns BJ, Sahm H (2001) Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic regulation mechanisms in vivo. Metab Eng 3:344–361PubMedCrossRefGoogle Scholar
  54. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300PubMedGoogle Scholar
  55. Quek LE, Wittmann C, Nielsen LK, Krömer JO (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25PubMedCrossRefGoogle Scholar
  56. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142PubMedCrossRefGoogle Scholar
  57. Sano K, Ito K, Miwa K, Nakamori S (1987) Amplification of the phosphoenol pyruvate carboxylase gene of Brevibacterium lactofermentum to improve amino acid production. Agric Biol Chem 51(2):597–599CrossRefGoogle Scholar
  58. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62PubMedCrossRefGoogle Scholar
  59. Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794PubMedCrossRefGoogle Scholar
  60. Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wuthrich K (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol 15:448–452PubMedCrossRefGoogle Scholar
  61. Sawada K, Zen-In S, Wada M, Yokota A (2010) Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032. Metab Eng 12(4):401–7PubMedCrossRefGoogle Scholar
  62. Schilling CH, Schuster S, Palsson BO, Heinrich R (1999) Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Prog 15:296–303PubMedCrossRefGoogle Scholar
  63. Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700PubMedCrossRefGoogle Scholar
  64. Shimizu H, Tanaka H, Nakato A, Nagahisa K, Kimura E, Shioya S (2003) Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum. Bioprocess Biosyst Eng 25:291–298PubMedGoogle Scholar
  65. Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 8:43PubMedCrossRefGoogle Scholar
  66. Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S, Shimizu H (2007) Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb Cell Fact 6:19PubMedCrossRefGoogle Scholar
  67. Silberbach M, Schäfer M, Hüser AT, Kalinowski J, Pühler A, Krämer R, Burkovski A (2005) Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl Environ Microbiol 71:2391–2402PubMedCrossRefGoogle Scholar
  68. Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633–646PubMedCrossRefGoogle Scholar
  69. van Winden WA, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, Heijnen JJ (2005) Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of (13)C-labeled primary metabolites. FEMS Yeast Res 5:559–568PubMedCrossRefGoogle Scholar
  70. Varela C, Agosin E, Baez M, Klapa M, Stephanopoulos G (2003) Metabolic flux redistribution in Corynebacterium glutamicum in response to osmotic stress. Appl Microbiol Biotechnol 60:547–555PubMedGoogle Scholar
  71. Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–646PubMedCrossRefGoogle Scholar
  72. Walker TE, Han CH, Kollman VH, London RE, Matwiyoff NA (1982) 13C nuclear magnetic resonance studies of the biosynthesis by Microbacterium ammoniaphilum of L-glutamate selectively enriched with carbon-13. J Biol Chem 257:1189–1195PubMedGoogle Scholar
  73. Wehrmann A, Phillipp B, Sahm H, Eggeling L (1998) Different modes of diaminopimelate synthesis and their role in cell wall integrity: a study with Corynebacterium glutamicum. J Bacteriol 180:3159–3165PubMedGoogle Scholar
  74. Wiechert W, de Graaf A (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 55(1):102–117Google Scholar
  75. Wiechert W, Möllney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283PubMedCrossRefGoogle Scholar
  76. Wittmann C (2002) Metabolic flux analysis using mass spectrometry. Adv Biochem Eng Biotechnol 74:39–64PubMedGoogle Scholar
  77. Wittmann C (2007) Fluxome analysis using GC-MS. Microb Cell Fact 6:6PubMedCrossRefGoogle Scholar
  78. Wittmann C (2010) Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 120:21–49PubMedGoogle Scholar
  79. Wittmann C, Becker J (2007) The L-lysine story: from metabolic pathways to industrial production. In: Wendisch VF (ed) Amino acid biosynthesis – pathways, regulation and metabolic engineering. Springer, Berlin, pp 39–70CrossRefGoogle Scholar
  80. Wittmann C, de Graaf A (2005) Metabolic flux analysis in Corynebacterium glutamicum. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FL, pp 277–304Google Scholar
  81. Wittmann C, Heinzle E (2001a) Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum: a novel approach for metabolic flux analysis. Eur J Biochem 268:2441–2455PubMedCrossRefGoogle Scholar
  82. Wittmann C, Heinzle E (2001b) Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metab Eng 3:173–191PubMedCrossRefGoogle Scholar
  83. Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing Corynebacteria. Appl Environ Microbiol 68:5843–5859PubMedCrossRefGoogle Scholar
  84. Wittmann C, Hans M, Heinzle E (2002) In vivo analysis of intracellular amino acid labelings by GC/MS. Anal Biochem 307:379–382PubMedCrossRefGoogle Scholar
  85. Wittmann C, Kiefer P, Zelder O (2004a) Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70:7277–7287PubMedCrossRefGoogle Scholar
  86. Wittmann C, Kim HM, Heinzle E (2004b) Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale. Biotechnol Bioeng 87:1–6PubMedCrossRefGoogle Scholar
  87. Yang TH, Heinzle E, Wittmann C (2005) Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling. Comput Biol Chem 29:121–133PubMedCrossRefGoogle Scholar
  88. Yang TH, Wittmann C, Heinzle E (2006a) Respirometric 13C flux analysis-Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metab Eng 8:432–446CrossRefGoogle Scholar
  89. Yang TH, Wittmann C, Heinzle E (2006b) Respirometric 13C flux analysis, Part I: design, construction and validation of a novel multiple reactor system using on-line membrane inlet mass spectrometry. Metab Eng 8:417–431PubMedCrossRefGoogle Scholar
  90. Yokota A, Lindley ND (2005) Central metabolism: sugar uptake and conversion. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FL, pp 215–240Google Scholar
  91. Yuan, Yang TH, Heinzle E (2010) 13C metabolic flux analysis for larger scale cultivation using gas chromatography isotope ratio mass spectrometry. Metab. Eng. 12: 392–406.PubMedCrossRefGoogle Scholar
  92. Yukawa H, Omumasaba CA, Nonaka H, Kós ON, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda J, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Biochemical Engineering InstituteTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations