Biorefinery Applications of Corynebacterium glutamicum

  • Toru Jojima
  • Masayuki Inui
  • Hideaki Yukawa
Part of the Microbiology Monographs book series (MICROMONO, volume 23)


The biorefinery concept is an emerging concept for conducting industrial processes to manufacture a range of commodity chemicals, fuels, and energy from biomass-based feedstock. The current interest in implementing a biorefinery industry is largely derived by a combination of rising petroleum prices as well as the need to reduce greenhouse gas emissions and atmospheric CO2 levels to mitigate global warming. To date, Corynebacterium glutamicum-based technology has not been considered as the primary manufacturing platform for sustainable chemicals. Indeed, despite a long history of use for the industrial production of amino acids, C. glutamicum, as compared to Escherichia coli or Saccharomyces cerevisiae, has been scarcely studied and engineered to fit the needs of the lignocellulosic biorefinery. However, progress over the last decade in the understanding of its molecular physiology and metabolic engineering makes this microorganism an attractive option as a biorefinery biocatalyst. In addition, the development of a novel bioprocess using growth-arrested cells of C. glutamicum under oxygen deprivation constitutes a promise for biorefinery research and development. In this chapter, recent studies on the development of C. glutamicum as a commodity chemicals producer are reviewed and the key challenges that remain to overcome in order to deliver the full potential of this microbe to produce commodity chemicals are outlined.


Lignocellulosic Biomass Crude Glycerol Xylose Reductase Oxygen Deprivation Xylitol Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akashi K, Ikeda S, Shibai H, Kobayashi K, Hirose Y (1978) Determination of redox potential levels critical for cell respiration and suitable for L-leucine production. Biotechnol Bioeng 20:27–41PubMedCrossRefGoogle Scholar
  2. Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467PubMedCrossRefGoogle Scholar
  3. Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723PubMedCrossRefGoogle Scholar
  4. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedGoogle Scholar
  5. Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198PubMedCrossRefGoogle Scholar
  6. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89PubMedCrossRefGoogle Scholar
  7. Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP (2004) Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 70:2861–2866PubMedCrossRefGoogle Scholar
  8. Blombach B, Schreiner ME, Holátko J, Bartek T, Oldiges M, Eikmanns BJ (2007) L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73:2079–2084PubMedCrossRefGoogle Scholar
  9. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310PubMedCrossRefGoogle Scholar
  10. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates―the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRefGoogle Scholar
  11. Buschke N, Schröder H, Wittmann C (2011) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6:306PubMedCrossRefGoogle Scholar
  12. Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 95:1167–1176PubMedCrossRefGoogle Scholar
  13. Collins M, Cummins C (1986) Genus Corynebacterium. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (Eds) Bergey's manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1266–1276.Google Scholar
  14. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266PubMedCrossRefGoogle Scholar
  15. Dominguez H, Nezondet C, Lindley ND, Cocaign M (1993) Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotech Lett 15:449–454CrossRefGoogle Scholar
  16. Dominguez-Faus R, Powers SE, Burken JG, Alvarez PJ (2009) The water footprint of biofuels: a drink or drive issue? Environ Sci Technol 43:3005–3010PubMedCrossRefGoogle Scholar
  17. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FLGoogle Scholar
  18. Elander RT, Dale BE, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN, Wyman CE (2009) Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment. Cellulose 16:649–659CrossRefGoogle Scholar
  19. Geddes CC, Mullinnix MT, Nieves IU, Peterson JJ, Hoffman RW, York SW, Yomano LP, Miller EN, Shanmugam KT, Ingram LO (2011) Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour Technol 102:2702–2711PubMedCrossRefGoogle Scholar
  20. Gielen D (2008) Energy Technology Perspectives. Paris, International Energy AgencyGoogle Scholar
  21. Hamana K, Matsuzaki S (1992) Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 18:261–283PubMedCrossRefGoogle Scholar
  22. Hansen AC, Kyritsis DC, Lee CF (2010) Characteristics of biofuels and renewable fuel standards. Blackwell, OxfordGoogle Scholar
  23. Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266PubMedCrossRefGoogle Scholar
  24. Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35PubMedGoogle Scholar
  25. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109PubMedCrossRefGoogle Scholar
  26. Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004a) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254PubMedCrossRefGoogle Scholar
  27. Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004b) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196PubMedCrossRefGoogle Scholar
  28. Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertès AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504PubMedCrossRefGoogle Scholar
  29. Inui M, Vertès AA, Yukawa H (2010) Advanced fermentation technologies. In: Vertès AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. Wiley, New Jersey, pp 311–330CrossRefGoogle Scholar
  30. Jo SJ, Matsumoto K, Leong CR, Ooi T, Taguchi S (2007) Improvement of poly(3-hydroxybutyrate) [P(3HB)] production in Corynebacterium glutamicum by codon optimization, point mutation and gene dosage of P(3HB) biosynthetic genes. J Biosci Bioeng 104:457–463PubMedCrossRefGoogle Scholar
  31. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534PubMedCrossRefGoogle Scholar
  32. Jojima T, Omumasaba CA, Inui M, Yukawa H (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85:471–480PubMedCrossRefGoogle Scholar
  33. Jordan N, Boody G, Broussard W, Glover JD, Keeney D, McCown BH, McIsaac G, Muller M, Murray H, Neal J, Pansing C, Turner RE, Warner K, Wyse D (2007) Environment. Sustainable development of the agricultural bio-economy. Science 316:1570–1571PubMedCrossRefGoogle Scholar
  34. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25PubMedCrossRefGoogle Scholar
  35. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145PubMedCrossRefGoogle Scholar
  36. Kamm B, Kamm M (2007) Biorefineries–multi product processes. Adv Biochem Eng Biotechnol 105:175–204PubMedGoogle Scholar
  37. Katzen R, Schell DJ (2006) Lignocellulosic feedstock biorefinery: history and plant development for biomass hydrolysis. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries: industrial processes and products, vol 2. Wiley-VCH, Weinheim, pp 129–138Google Scholar
  38. Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428PubMedCrossRefGoogle Scholar
  39. Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062PubMedCrossRefGoogle Scholar
  40. Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2009) Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75:3419–3429PubMedCrossRefGoogle Scholar
  41. Kind S, Jeong WK, Schröder H, Wittmann C (2010a) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12:341–351PubMedCrossRefGoogle Scholar
  42. Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C (2010b) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76:5175–5180PubMedCrossRefGoogle Scholar
  43. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26PubMedCrossRefGoogle Scholar
  44. Kotrba P, Inui M, Yukawa H (2001) The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem Biophys Res Commun 289:1307–1313PubMedCrossRefGoogle Scholar
  45. Kotrba P, Inui M, Yukawa H (2003) A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149:1569–1580PubMedCrossRefGoogle Scholar
  46. Krause FS, Blombach B, Eikmanns BJ (2010) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol 76:8053–8061PubMedCrossRefGoogle Scholar
  47. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8PubMedCrossRefGoogle Scholar
  48. Liu S (2010) Conversion of biomass to ethanol by other organisms. In: Vertès AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. Wiley, New Jersey, pp 293–310CrossRefGoogle Scholar
  49. Liu H, Xu Y, Zheng Z, Liu D (2010) 1,3-Propanediol and its copolymers: research, development and industrialization. Biotechnol J 5:1137–1148PubMedCrossRefGoogle Scholar
  50. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedGoogle Scholar
  51. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740PubMedCrossRefGoogle Scholar
  52. Miller EN, Turner PC, Jarboe LR, Ingram LO (2010) Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180. Biotechnol Lett 32:661–667PubMedCrossRefGoogle Scholar
  53. Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71:2130–2135PubMedCrossRefGoogle Scholar
  54. Nigam P, Singh D (1995) Processes for fermentative production of xylitol – a sugar substitute. Process Biochem 30:117–124Google Scholar
  55. Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897PubMedCrossRefGoogle Scholar
  56. Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480PubMedCrossRefGoogle Scholar
  57. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008a) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464PubMedCrossRefGoogle Scholar
  58. Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008b) Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454PubMedCrossRefGoogle Scholar
  59. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a biorefinery and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Lab reportGoogle Scholar
  60. Petersson A, Almeida JR, Modig T, Karhumaa K, Hähn-Hagerdal B, Gorwa-Grauslund MF, Lidén G (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455–464PubMedCrossRefGoogle Scholar
  61. Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762CrossRefGoogle Scholar
  62. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489PubMedCrossRefGoogle Scholar
  63. Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222PubMedCrossRefGoogle Scholar
  64. Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73:2349–2353PubMedCrossRefGoogle Scholar
  65. Sasaki M, Jojima T, Inui M, Yukawa H (2008) Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 81:691–699PubMedCrossRefGoogle Scholar
  66. Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85:105–115PubMedCrossRefGoogle Scholar
  67. Sasaki M, Jojima T, Inoue T, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86:1057–1066PubMedCrossRefGoogle Scholar
  68. Scharlemann JP, Laurance WF (2008) How green are biofuels? Science 319:43–44PubMedCrossRefGoogle Scholar
  69. Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435PubMedCrossRefGoogle Scholar
  70. Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868PubMedCrossRefGoogle Scholar
  71. Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154(2–3):191–198PubMedCrossRefGoogle Scholar
  72. Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87:1045–1055PubMedCrossRefGoogle Scholar
  73. Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96CrossRefGoogle Scholar
  74. Suzuki N, Inui M, Yukawa H (2008) Random genome deletion methods applicable to prokaryotes. Appl Microbiol Biotechnol 79:519–526PubMedCrossRefGoogle Scholar
  75. Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M (2007) Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 75:1173–1182PubMedCrossRefGoogle Scholar
  76. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing α-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82:115–121PubMedCrossRefGoogle Scholar
  77. Terasawa M, Yukawa H (1993) Industrial production of biochemicals by native immobilization. In: Tanaka A, Tosa T, Kobayashi T (eds) Industrial application of immobilized biocatalysts. Marcel Dekker, New York, pp 25–36Google Scholar
  78. Terasawa M, Yukawa H, Takayama Y (1985) Production of L-aspartic acid from Brevibacterium by the cell re-using process. Process Biochem 20:124–128Google Scholar
  79. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Energy. Beneficial biofuels–the food, energy, and environment trilemma. Science 325:270–271PubMedCrossRefGoogle Scholar
  80. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597PubMedCrossRefGoogle Scholar
  81. Vertès AA (2010) Axes of development in chemical and process engineering for converting biomass to energy. In: Vertès AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. Wiley, New Jersey, pp 491–521CrossRefGoogle Scholar
  82. Vertès AA, Inui M, Yukawa H (2005) Manipulating corynebacteria, from individual genes to chromosomes. Appl Environ Microbiol 71:7633–7642PubMedCrossRefGoogle Scholar
  83. Vertès AA, Inui M, Yukawa H (2006) Implementing biofuels on a global scale. Nat Biotechnol 24:761–764PubMedCrossRefGoogle Scholar
  84. Vertès AA, Inui M, Yukawa H (2007) Alternative technologies for biotechnological fuel ethanol manufacturing. J Chem Technol Biotechnol 82:693–697CrossRefGoogle Scholar
  85. Vertès AA, Inui M, Yukawa H (2008) Technological options for biological fuel ethanol. J Mol Microbiol Biotechnol 15:16–30PubMedCrossRefGoogle Scholar
  86. Wang F, Lee SY (1998) High cell density culture of metabolically engineered Escherichia coli for the production of poly(3-hydroxybutyrate) in a defined medium. Biotechnol Bioeng 58:325–328PubMedCrossRefGoogle Scholar
  87. Yamamoto S, Sakai M, Inui M, Yukawa H (2011) Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives. Appl Microbiol Biotechnol 90:1051–1061PubMedCrossRefGoogle Scholar
  88. Yang S, Land ML, Klingeman DM, Pelletier DA, Lu TY, Martin SL, Guo HB, Smith JC, Brown SD (2010) Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 107:10395–10400PubMedCrossRefGoogle Scholar
  89. Yukawa H, Terasawa M (1986) L-isoleucine production by ethanol utilizing micro-organism. Process Biochem 21:196–199Google Scholar
  90. Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Research Institute of Innovative Technology for the Earth (RITE)KizugawaJapan

Personalised recommendations