Advertisement

Genome Engineering of Corynebacterium glutamicum

  • Nobuaki Suzuki
  • Masayuki Inui
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 23)

Abstract

As a direct consequence of the recent advances in DNA sequencing technologies, complete genome sequences of more than 1,200 bacterial species have already been deciphered and they form an important resource for understanding the diversity of bacterial metabolic systems. Manipulation of bacterial genome sequences by integration, replacement, and disruption of individual genes has, in parallel, become a powerful strategy to improve bacterial traits. Regarding Corynebacterium glutamicum, whole genome sequences of two strains, namely R (3,314,179 bp) and ATCC 13032 (3,309,401 bp or 3,282,708 bp), have been determined and strain reconstruction studies initiated. Several techniques for genome-wide genetic manipulations using transposons, DNA recombinase, and homologous recombination reactions have been developed. These advances are particularly important because C. glutamicum has a long history of applications for the production for various commodity and fine chemicals. Armed with the microbe’s complete sequence, improvement and tailoring of its properties using genome engineering techniques continue to help facilitate the identification of metabolic bottlenecks and, consequently, their resolution. This in turn enhances the intrinsic characteristics of this bacterium as an industrial workhorse. In this chapter, recently developed techniques that enable to manipulate the C. glutamicum genome are summarized.

Keywords

Transposable Element Corynebacterium Glutamicum loxP Site Restriction Barrier Transposition Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to thank Dr. C. Omumasaba (internal) for the critical reading of the manuscript.

References

  1. Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659PubMedCrossRefGoogle Scholar
  2. Ankri S, Reyes O, Leblon G (1996a) Electrotransformation of highly DNA-restrictive corynebacteria with synthetic DNA. Plasmid 35:62–66PubMedCrossRefGoogle Scholar
  3. Ankri S, Reyes O, Leblon G (1996b) Improved electro-transformation of highly DNA-restrictive corynebacteria with DNA extracted from starved Escherichia coli. FEMS Microbiol Lett 140:247–251PubMedCrossRefGoogle Scholar
  4. Ara K, Ozaki K, Nakamura K, Yamane K, Sekiguchi J, Ogasawara N (2007) Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem 46:169–178PubMedCrossRefGoogle Scholar
  5. Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872PubMedCrossRefGoogle Scholar
  6. Austin S, Ziese M, Sternberg N (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25:729–736PubMedCrossRefGoogle Scholar
  7. Bethke B, Sauer B (1997) Segmental genomic replacement by Cre-mediated recombination: genotoxic stress activation of the p53 promoter in single-copy transformants. Nucleic Acids Res 25:2828–2834PubMedCrossRefGoogle Scholar
  8. Bonamy C, Guyonvarch A, Reyes O, David F, Leblon G (1990) Interspecies electro-transformation in Corynebacteria. FEMS Microbiol Lett 54:263–269PubMedCrossRefGoogle Scholar
  9. Bonamy C, Labarre J, Reyes O, Leblon G (1994) Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis. Mol Microbiol 14:571–581PubMedCrossRefGoogle Scholar
  10. Broach JR, Guarascio VR, Jayaram M (1982) Recombination within the yeast plasmid 2mu circle is site-specific. Cell 29:227–234PubMedCrossRefGoogle Scholar
  11. Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49:277–300PubMedCrossRefGoogle Scholar
  12. Chen Y, Narendra U, Iype LE, Cox MM, Rice PA (2000) Crystal structure of a Flp recombinase-Holliday junction complex: assembly of an active oligomer by helix swapping. Mol Cell 6:885–897PubMedGoogle Scholar
  13. Dean D (1981) A plasmid cloning vector for the direct selection of strains carrying recombinant plasmids. Gene 15:99–102PubMedCrossRefGoogle Scholar
  14. Derbise A, Lesic B, Dacheux D, Ghigo JM, Carniel E (2003) A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunol Med Microbiol 38:113–116PubMedCrossRefGoogle Scholar
  15. Fukiya S, Mizoguchi H, Mori H (2004) An improved method for deleting large regions of Escherichia coli K-12 chromosome using a combination of Cre/loxP and lambda Red. FEMS Microbiol Lett 234:325–331PubMedGoogle Scholar
  16. Gay P, Le Coq D, Steinmetz M, Berkelman T, Kado CI (1985) Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164:918–921PubMedGoogle Scholar
  17. Goryshin IY, Jendrisak J, Hoffman LM, Meis R, Reznikoff WS (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18:97–100PubMedCrossRefGoogle Scholar
  18. Goryshin IY, Naumann TA, Apodaca J, Reznikoff WS (2003) Chromosomal deletion formation system based on Tn5 double transposition: use for making minimal genomes and essential gene analysis. Genome Res 13:644–653PubMedCrossRefGoogle Scholar
  19. Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K, Keyamura K, Ote T, Yamakawa T, Yamazaki Y, Mori H, Katayama T, Kato J (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55:137–149PubMedCrossRefGoogle Scholar
  20. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172PubMedCrossRefGoogle Scholar
  21. Hoess RH, Abremski K (1984) Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc Natl Acad Sci USA 81:1026–1029PubMedCrossRefGoogle Scholar
  22. Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 79:3398–3402PubMedCrossRefGoogle Scholar
  23. Hoffman LM, Jendrisak JJ, Meis RJ, Goryshin IY, Reznikof SW (2000) Transposome insertional mutagenesis and direct sequencing of microbial genomes. Genetica 108:19–24PubMedCrossRefGoogle Scholar
  24. Horton RM (1995) PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol 3:93–99PubMedCrossRefGoogle Scholar
  25. Ikeda M, Katsumata R (1998) A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum. Microbiology 144:1863–1868PubMedCrossRefGoogle Scholar
  26. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109PubMedCrossRefGoogle Scholar
  27. Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254PubMedCrossRefGoogle Scholar
  28. Inui M, Tsuge Y, Suzuki N, Vertès AA, Yukawa H (2005) Isolation and characterization of a native composite transposon, Tn14751, carrying 17.4 kilobases of Corynebacterium glutamicum chromosomal DNA. Appl Environ Microbiol 71:407–416PubMedCrossRefGoogle Scholar
  29. Isberg RR, Lazaar AL, Syvanen M (1982) Regulation of Tn5 by the right-repeat proteins: control at the level of the transposition reaction? Cell 30:883–892PubMedCrossRefGoogle Scholar
  30. Itaya M, Tsuge K, Koizumi M, Fujita K (2005) Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc Natl Acad Sci USA 102:15971–15976PubMedCrossRefGoogle Scholar
  31. Jäger W, Schäfer A, Pühler A, Labes G, Wohlleben W (1992) Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol 174:5462–5465PubMedGoogle Scholar
  32. Jäger W, Schäfer A, Kalinowski J, Pühler A (1995) Isolation of insertion elements from gram-positive Brevibacterium, Corynebacterium and Rhodococcus strains using the Bacillus subtilis sacB gene as a positive selection marker. FEMS Microbiol Lett 126:1–6PubMedCrossRefGoogle Scholar
  33. Jang KH, Chambers PJ, Britz ML (1996) Analysis of nucleotide methylation in DNA from Corynebacterium glutamicum and related species. FEMS Microbiol Lett 136:309–315PubMedCrossRefGoogle Scholar
  34. Jayaram M (1985) Two-micrometer circle site-specific recombination: the minimal substrate and the possible role of flanking sequences. Proc Natl Acad Sci USA 82:5875–5879PubMedCrossRefGoogle Scholar
  35. Johnson RC, Reznikoff WS (1984) Role of the IS50 R proteins in the promotion and control of Tn5 transposition. J Mol Biol 177:645–661PubMedCrossRefGoogle Scholar
  36. Johnson RC, Yin JC, Reznikoff WS (1982) Control of Tn5 transposition in Escherichia coli is mediated by protein from the right repeat. Cell 30:873–882PubMedCrossRefGoogle Scholar
  37. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Pühler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25PubMedCrossRefGoogle Scholar
  38. Knight TF (2003) Idempotent vector design for standard assembly of Biobricks. http://hdl.handle.net/1721.1/21168, website DSpace
  39. Kolisnychenko V, Plunkett G 3rd, Herring CD, Feher T, Posfai J, Blattner FR, Posfai G (2002) Engineering a reduced Escherichia coli genome. Genome Res 12:640–647PubMedCrossRefGoogle Scholar
  40. Kuhn R, Torres RM (2002) Cre/loxP recombination system and gene targeting. Methods Mol Biol 180:175–204PubMedGoogle Scholar
  41. Kumagai H (2000) Microbial production of amino acids in Japan. Adv Biochem Eng Biotechnol 69:71–85PubMedGoogle Scholar
  42. Lee L, Sadowski PD (2001) Directional resolution of synthetic holliday structures by the Cre recombinase. J Biol Chem 276:31092–31098PubMedCrossRefGoogle Scholar
  43. Lee G, Saito I (1998) Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216:55–65PubMedCrossRefGoogle Scholar
  44. Liebl W, Bayerl A, Schein B, Stillner U, Schleifer KH (1989) High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 53:299–303PubMedCrossRefGoogle Scholar
  45. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463PubMedCrossRefGoogle Scholar
  46. Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774PubMedGoogle Scholar
  47. Malumbres M, Mateos LM, Martin JF (1995) Microorganisms for amino acid production: Escherichia coli and corynebacteria. VCH Publishers, New YorkGoogle Scholar
  48. Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596PubMedCrossRefGoogle Scholar
  49. Moreau S, Leret V, Le Marrec C, Varangot H, Ayache M, Bonnassie S, Blanco C, Trautwetter A (1995) Prophage distribution in coryneform bacteria. Res Microbiol 146:493–505PubMedCrossRefGoogle Scholar
  50. Moreau S, Blanco C, Trautwetter A (1999a) Site-specific integration of corynephage phi16: construction of an integration vector. Microbiology 145:539–548PubMedCrossRefGoogle Scholar
  51. Moreau S, Le Marrec C, Blanco C, Trautwetter A (1999b) Analysis of the integration functions of phi304L: an integrase module among corynephages. Virology 255:150–159PubMedCrossRefGoogle Scholar
  52. Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180:2063–2071PubMedGoogle Scholar
  53. Nakamura J, Kanno S, Kimura E, Matsui K, Nakamatsu T, Wachi M (2006) Temperature-sensitive cloning vector for Corynebacterium glutamicum. Plasmid 56:179–186PubMedCrossRefGoogle Scholar
  54. Nakano M, Odaka K, Ishimura M, Kondo S, Tachikawa N, Chiba J, Kanegae Y, Saito I (2001) Efficient gene activation in cultured mammalian cells mediated by FLP recombinase-expressing recombinant adenovirus. Nucleic Acids Res 29:E40PubMedCrossRefGoogle Scholar
  55. Ochman H, Jones IB (2000) Evolutionary dynamics of full genome content in Escherichia coli. EMBO J 19:6637–6643PubMedCrossRefGoogle Scholar
  56. Okibe N, Suzuki N, Inui M, Yukawa H (2011) Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Methods 85:155–163PubMedCrossRefGoogle Scholar
  57. Posfai G, Kolisnychenko V, Bereczki Z, Blattner FR (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27:4409–4415PubMedCrossRefGoogle Scholar
  58. Proteau G, Sidenberg D, Sadowski P (1986) The minimal duplex DNA sequence required for site-specific recombination promoted by the FLP protein of yeast in vitro. Nucleic Acids Res 14:4787–4802PubMedCrossRefGoogle Scholar
  59. Reyes O, Guyonvarch A, Bonamy C, Salti V, David F, Leblon G (1991) ‘Integron’-bearing vectors: a method suitable for stable chromosomal integration in highly restrictive corynebacteria. Gene 107:61–68PubMedCrossRefGoogle Scholar
  60. Russell CB, Dahlquist FW (1989) Exchange of chromosomal and plasmid alleles in Escherichia coli by selection for loss of a dominant antibiotic sensitivity marker. J Bacteriol 171:2614–2618PubMedGoogle Scholar
  61. Schäfer A, Kalinowski J, Simon R, Seep-Feldhaus AH, Pühler A (1990) High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol 172:1663–1666PubMedGoogle Scholar
  62. Schäfer A, Kalinowski J, Pühler A (1994a) Increased fertility of Corynebacterium glutamicum recipients in intergeneric matings with Escherichia coli after stress exposure. Appl Environ Microbiol 60:756–759PubMedGoogle Scholar
  63. Schäfer A, Schwarzer A, Kalinowski J, Pühler A (1994b) Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13032 and analysis of its role in intergeneric conjugation with Escherichia coli. J Bacteriol 176:7309–7319PubMedGoogle Scholar
  64. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994c) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73PubMedCrossRefGoogle Scholar
  65. Schäfer A, Tauch A, Droste N, Pühler A, Kalinowski J (1997) The Corynebacterium glutamicum cglIM gene encoding a 5-cytosine methyltransferase enzyme confers a specific DNA methylation pattern in an McrBC-deficient Escherichia coli strain. Gene 203:95–101PubMedCrossRefGoogle Scholar
  66. Schwarzer A, Pühler A (1991) Manipulation of Corynebacterium glutamicum by gene disruption and replacement. Biotechnology (N Y) 9:84–87CrossRefGoogle Scholar
  67. Seibler J, Bode J (1997) Double-reciprocal crossover mediated by FLP-recombinase: a concept and an assay. Biochemistry 36:1740–1747PubMedCrossRefGoogle Scholar
  68. Senecoff JF, Bruckner RC, Cox MM (1985) The FLP recombinase of the yeast 2-micron plasmid: characterization of its recombination site. Proc Natl Acad Sci USA 82:7270–7274PubMedCrossRefGoogle Scholar
  69. Steiniger-White M, Rayment I, Reznikoff WS (2004) Structure/function insights into Tn5 transposition. Curr Opin Struct Biol 14:50–57PubMedCrossRefGoogle Scholar
  70. Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005a) New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl Environ Microbiol 71:8472–8480PubMedCrossRefGoogle Scholar
  71. Suzuki N, Nonaka H, Tsuge Y, Okayama S, Inui M, Yukawa H (2005b) Multiple large segment deletion method for Corynebacterium glutamicum. Appl Microbiol Biotechnol 69:151–161PubMedCrossRefGoogle Scholar
  72. Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005c) Large-scale engineering of the Corynebacterium glutamicum genome. Appl Environ Microbiol 71:3369–3372PubMedCrossRefGoogle Scholar
  73. Suzuki N, Tsuge Y, Inui M, Yukawa H (2005d) Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl Microbiol Biotechnol 67: 225–233Google Scholar
  74. Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2006) High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72:3750–3755PubMedCrossRefGoogle Scholar
  75. Suzuki N, Inui M, Yukawa H (2007) Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:871–878PubMedCrossRefGoogle Scholar
  76. Taniya T, Mitobe J, Nakayama S, Mingshan Q, Okuda K, Watanabe H (2003) Determination of the InvE binding site required for expression of IpaB of the Shigella sonnei virulence plasmid: involvement of a ParB boxA-like sequence. J Bacteriol 185:5158–5165PubMedCrossRefGoogle Scholar
  77. Tauch A, Kassing F, Kalinowski J, Pühler A (1995) The erythromycin resistance gene of the Corynebacterium xerosis R-plasmid pTP10 also carrying chloramphenicol, kanamycin, and tetracycline resistances is capable of transposition in Corynebacterium glutamicum. Plasmid 33:168–179PubMedCrossRefGoogle Scholar
  78. Tauch A, Zheng Z, Pühler A, Kalinowski J (1998) Corynebacterium striatum chloramphenicol resistance transposon Tn5564: genetic organization and transposition in Corynebacterium glutamicum. Plasmid 40:126–139PubMedCrossRefGoogle Scholar
  79. Thatcher JW, Shaw JM, Dickinson WJ (1998) Marginal fitness contributions of nonessential genes in yeast. Proc Natl Acad Sci USA 95:253–257PubMedCrossRefGoogle Scholar
  80. Trevors JT (1997) Evolution of bacterial genomes. Antonie Van Leeuwenhoek 71:265–270PubMedCrossRefGoogle Scholar
  81. Tsuge Y, Ninomiya K, Suzuki N, Inui M, Yukawa H (2005) A new insertion sequence, IS14999, from Corynebacterium glutamicum. Microbiology 151:501–508PubMedCrossRefGoogle Scholar
  82. Tsuge Y, Suzuki N, Inui M, Yukawa H (2007a) Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 74:1333–1341PubMedCrossRefGoogle Scholar
  83. Tsuge Y, Suzuki N, Ninomiya K, Inui M, Yukawa H (2007b) Isolation of a new insertion sequence, IS13655, and its application to Corynebacterium glutamicum genome mutagenesis. Biosci Biotechnol Biochem 71:1683–1690PubMedCrossRefGoogle Scholar
  84. Uzzau S, Figueroa-Bossi N, Rubino S, Bossi L (2001) Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci USA 98:15264–15269PubMedCrossRefGoogle Scholar
  85. van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545PubMedCrossRefGoogle Scholar
  86. van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4:147–152PubMedCrossRefGoogle Scholar
  87. Vertès AA, Hatakeyama M, Inui M, Kobayashi Y, Kurusu Y, Yukawa H (1993a) Replacement recombination in coryneform bacteria: high efficiency integration requirement for non-methylated plasmid DNA. Biosci Biotechnol Biochem 57:2036–2038CrossRefGoogle Scholar
  88. Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1993b) Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol 144:181–185PubMedCrossRefGoogle Scholar
  89. Vertès AA, Asai Y, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1994a) Transposon mutagenesis of coryneform bacteria. Mol Gen Genet 245:397–405PubMedCrossRefGoogle Scholar
  90. Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1994b) Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum. Mol Microbiol 11:739–746PubMedCrossRefGoogle Scholar
  91. Vertès AA, Inui M, Yukawa H (2005) Manipulating Corynebacteria, from genes to chromosomes. Appl Environ Microbiol 71:7633–7642PubMedCrossRefGoogle Scholar
  92. Westers H, Dorenbos R, van Dijl JM, Kabel J, Flanagan T, Devine KM, Jude F, Seror SJ, Beekman AC, Darmon E, Eschevins C, de Jong A, Bron S, Kuipers OP, Albertini AM, Antelmann H, Hecker M, Zamboni N, Sauer U, Bruand C, Ehrlich DS, Alonso JC, Salas M, Quax WJ (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol 20:2076–2090PubMedCrossRefGoogle Scholar
  93. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983PubMedCrossRefGoogle Scholar
  94. Yu BJ, Sung BH, Koob MD, Lee CH, Lee JH, Lee WS, Kim MS, Kim SC (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol 20:1018–1023PubMedCrossRefGoogle Scholar
  95. Yukawa H, Inui M, Vertès AA (2006) Genomes and genome-level engineering of amino acid-producing bacteria. In: Wendisch VF (ed) Amino acid biosynthesis, vol 5, Microbiology monographs. Springer, Berlin, pp 350–401Google Scholar
  96. Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058PubMedCrossRefGoogle Scholar
  97. Yuksel S, Hansen JN (2007) Transfer of nisin gene cluster from Lactococcus lactis ATCC 11454 into the chromosome of Bacillus subtilis 168. Appl Microbiol Biotechnol 74:640–649PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Research Institute of Innovative Technology for the Earth (RITE)KizugawaJapan

Personalised recommendations