Advertisement

Cell Division Mechanism of Corynebacterium glutamicum

  • Michal Letek
  • María Fiuza
  • Almudena F. Villadangos
  • Luís M. Mateos
  • José A. Gil
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 23)

Abstract

Bacterial cell size and morphology are enormously diverse. The molecular factors of morphogenesis are well understood in certain bacterial models and fairly conserved throughout a broad spectrum of bacterial species, as follows. In most bacteria, the tubulin-like FtsZ protein polymerizes at the mid cell , thereby generating the scaffold of the bacterial cell division septum. Actin-like MreB homologues are required for cell elongation at the lateral walls of Escherichia coli or Bacillus subtilis. Whereas FtsZ is conserved in Corynebacterium glutamicum, mreB homologues are absent in the corynebacterial genomes sequenced to date. Furthermore, in these bacteria, cell elongation occurs at the polar ends in a mycelial fashion. This process is structurally maintained from the inside of the cell by oligomers created through self-interaction of DivIVA, a coiled-coil-rich cytoskeletal protein that interacts with the molecular machinery of the polar cell wall synthesis. In addition, the molecular factors involved in the spatio-temporal regulation of bacterial cell division are also missing in C. glutamicum. However, certain serine/threonine kinases have been reported recently in this organism that could be implicated in a tight regulation of cytokinesis through protein phosphorylation. Since numerous antibiotics target bacterial cell division or cell elongation genes, a detailed understanding of these processes could enable the development of novel antibiotics for treating bacterial infections caused by pathogenic Corynebacteria or by the closely related Mycobacteria, Nocardia, or Rhodococcus.

Keywords

Cell Elongation Cell Wall Synthesis Corynebacterium Glutamicum Mycolic Acid Molecular Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

M. Letek and M. Fiuza were beneficiaries of fellowships from the Ministerio de Educación y Ciencia (Spain); A.F. Villadangos from the Junta de Castilla y León. This work was funded by grants from the Junta de Castilla y León (Ref. LE040A07 and LE028A10-2), University of León (ULE 2001-08B), and Ministerio de Ciencia y Tecnología (BIO2005-02723 and BIO2008-00519).

References

  1. Aldea M, Hernandez-Chico C, de la Campa AG, Kushner SR, Vicente M (1988) Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol 170:5169–5176PubMedGoogle Scholar
  2. Alderwick LJ, Radmacher E, Seidel M, Gande R, Hitchen PG, Morris HR, Dell A, Sahm H, Eggeling L, Besra GS (2005) Deletion of Cg-emb in corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an arabinan-deficient mutant with a cell wall galactan core. J Biol Chem 280:32362–32371PubMedGoogle Scholar
  3. Alderwick LJ, Dover LG, Seidel M, Gande R, Sahm H, Eggeling L, Besra GS (2006a) Arabinan-deficient mutants of Corynebacterium glutamicum and the consequent flux in decaprenylmonophosphoryl-D-arabinose metabolism. Glycobiology 16:1073–1081PubMedGoogle Scholar
  4. Alderwick LJ, Seidel M, Sahm H, Besra GS, Eggeling L (2006b) Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J Biol Chem 281:15653–15661PubMedGoogle Scholar
  5. Bernard CS, Sadasivam M, Shiomi D, Margolin W (2007) An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli. Mol Microbiol 64:1289–1305PubMedGoogle Scholar
  6. Bernhardt TG, de Boer PA (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol Cell 18:555–564PubMedGoogle Scholar
  7. Birch HL, Alderwick LJ, Rittmann D, Krumbach K, Etterich H, Grzegorzewicz A, McNeil MR, Eggeling L, Besra GS (2009) Identification of a terminal rhamnopyranosyltransferase (RptA) involved in Corynebacterium glutamicum cell wall biosynthesis. J Bacteriol 191:4879–4887PubMedGoogle Scholar
  8. Boitel B, Ortiz-Lombardia M, Duran R, Pompeo F, Cole ST, Cervenansky C, Alzari PM (2003) PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol Microbiol 49:1493–1508PubMedGoogle Scholar
  9. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J (2005) ACT: the Artemis Comparison Tool. Bioinformatics (Oxford, England) 21:3422–3423Google Scholar
  10. Chami M, Bayan N, Peyret JL, Gulik-Krzywicki T, Leblon G, Shechter E (1997) The S-layer protein of Corynebacterium glutamicum is anchored to the cell wall by its C-terminal hydrophobic domain. Mol Microbiol 23:483–492PubMedGoogle Scholar
  11. Chopra P, Singh B, Singh R, Vohra R, Koul A, Meena LS, Koduri H, Ghildiyal M, Deol P, Das TK, Tyagi AK, Singh Y (2003) Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB. Biochem Biophys Res Commun 311:112–120PubMedGoogle Scholar
  12. Collins MD, Goodfellow M, Minnikin DE (1982) A survey of the structures of mycolic acids in Corynebacterium and related taxa. J Gen Microbiol 128(Pt 1):129–149PubMedGoogle Scholar
  13. Courvalin P, Davies J (2003) Antimicrobials: time to act! Curr Opin Microbiol 6:425–529Google Scholar
  14. Cure GL, Keddie RM (1973) Methods for the morphological examination of aerobic coryneform bacteria. In: Boarf RG, Lovelock DM (eds) Sampling microbial monitoring or environments. Academic, New York, NY, pp 123–135Google Scholar
  15. Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776PubMedGoogle Scholar
  16. Dasgupta A, Datta P, Kundu M, Basu J (2006) The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152:493–504PubMedGoogle Scholar
  17. del Sol R, Mullins JG, Grantcharova N, Flardh K, Dyson P (2006) Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J Bacteriol 188:1540–1550PubMedGoogle Scholar
  18. Doi M, Wachi M, Ishino F, Tomioka S, Ito M, Sakagami Y, Suzuki A, Matsuhashi M (1988) Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells. J Bacteriol 170:4619–4624PubMedGoogle Scholar
  19. Donovan C, Schwaiger A, Krämer R, Bramkamp M (2010) Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum. J Bacteriol 192:3441–3451PubMedGoogle Scholar
  20. Dover LG, Cerdeno-Tarraga AM, Pallen MJ, Parkhill J, Besra GS (2004) Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae. FEMS Microbiol Rev 28:225–250PubMedGoogle Scholar
  21. Drews SJ, Hung F, Av-Gay Y (2001) A protein kinase inhibitor as an antimycobacterial agent. FEMS Microbiol Lett 205:369–374PubMedGoogle Scholar
  22. Fadda D, Santona A, D'Ulisse V, Ghelardini P, Ennas MG, Whalen MB, Massidda O (2007) Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD free context. J Bacteriol 189:1288–1298Google Scholar
  23. Fernandez P, Saint-Joanis B, Barilone N, Jackson M, Gicquel B, Cole ST, Alzari PM (2006) The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J Bacteriol 188:7778–7784PubMedGoogle Scholar
  24. Fernández-Natal I, Guerra J, Alcoba M, Cachón F, Soriano F (2001) Bacteremia caused by multiple resistant Corynebacterium urealyticum: six case reports and review. Eur J Clin Microbiol Infect Dis 20:514–517PubMedGoogle Scholar
  25. Feu Soufo HJ, Graumann PL (2005) Bacillus subtilis actin-like protein MreB influences the positioning of the replication machinery and requires membrane proteins MreC/D and other actin-like proteins for proper localization. BMC Cell Biol 6:10Google Scholar
  26. Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332PubMedGoogle Scholar
  27. Fiuza M, Canova MJ, Patin D, Letek M, Zanella-Cleon I, Becchi M, Mateos LM, Mengin-Lecreulx D, Molle V, Gil JA (2008a) The MurC ligase essential for peptidoglycan biosynthesis is regulated by the serine/threonine protein kinase PknA in Corynebacterium glutamicum. J Biol Chem 283:36553–36563PubMedGoogle Scholar
  28. Fiuza M, Canova MJ, Zanella-Cleon I, Becchi M, Cozzone AJ, Mateos LM, Kremer L, Gil JA, Molle V (2008b) From the characterization of the four serine/threonine protein kinases (PknA/B/G/L) of Corynebacterium glutamicum toward the role of PknA and PknB in cell division. J Biol Chem 283:18099–18112PubMedGoogle Scholar
  29. Fiuza M, Letek M, Leiba J, Villadangos AF, Vaquera J, Zanella-Cléon I, Mateos LM, Molle V, Gil JA (2010) Phosphorylation of a novel cytoskeletal protein (RsmP) regulates rod-shape morphology in Corynebacterium glutamicum. J Biol Chem 285:29387–29397PubMedGoogle Scholar
  30. Flärdh K (2003) Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol 49:1523–1536PubMedGoogle Scholar
  31. Freire P, Amaral JD, Santos JM, Arraiano CM (2006) Adaptation to carbon starvation: RNase III ensures normal expression levels of bolA1p mRNA and sigma(S). Biochimie 88:341–346PubMedGoogle Scholar
  32. Freire P, Moreira RN, Arraiano CM (2009) BolA inhibits cell elongation and regulates MreB expression levels. J Mol Biol 385:1345–1351PubMedGoogle Scholar
  33. Fuhrmann C, Soedarmanto I, Lammler C (1997) Studies on the rod-coccus life cycle of Rhodococcus equi. Zentralbl Veterinarmed B 44:287–294PubMedGoogle Scholar
  34. Funke G, von Graevenitz A, Clarridge JE, Bernard KA (1997) Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 10:125–159PubMedGoogle Scholar
  35. Geissler B, Margolin W (2005) Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK. Mol Microbiol 58:596–612PubMedGoogle Scholar
  36. Goffin C, Ghuysen JM (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62:1079–1093PubMedGoogle Scholar
  37. Hamoen LW, Meile JC, de Jong W, Noirot P, Errington J (2006) SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol Microbiol 59:989–999PubMedGoogle Scholar
  38. Hansmeier N, Bartels FW, Ros R, Anselmetti D, Tauch A, Pühler A, Kalinowski J (2004) Classification of hyper-variable Corynebacterium glutamicum surface-layer proteins by sequence analyses and atomic force microscopy. J Biotechnol 112:177–193PubMedGoogle Scholar
  39. Harry EJ, Lewis PJ (2003) Early targeting of Min proteins to the cell poles in germinated spores of Bacillus subtilis: evidence for division apparatus-independent recruitment of Min proteins to the division site. Mol Microbiol 47:37–48PubMedGoogle Scholar
  40. Hegymegi-Barakonyi B, Szekely R, Varga Z, Kiss R, Borbely G, Nemeth G, Banhegyi P, Pato J, Greff Z, Horvath Z, Meszaros G, Marosfalvi J, Eros D, Szantai-Kis C, Breza N, Garavaglia S, Perozzi S, Rizzi M, Hafenbradl D, Ko M, Av-Gay Y, Klebl BM, Orfi L, Keri G (2008) Signalling inhibitors against Mycobacterium tuberculosis–early days of a new therapeutic concept in tuberculosis. Curr Med Chem 15:2760–2770PubMedGoogle Scholar
  41. Hirasawa T, Wachi M, Nagai K (2000) A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. J Bacteriol 182:2696–2701PubMedGoogle Scholar
  42. Honrubia MP, Fernández FJ, Gil JA (1998) Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum. Mol Gen Genet 259:97–104PubMedGoogle Scholar
  43. Honrubia MP, Ramos A, Gil JA (2001) The cell division genes ftsQ and ftsZ, but not the three downstream open reading frames YFIH, ORF5 and ORF6, are essential for growth and viability in Brevibacterium lactofermentum ATCC 13869. Mol Genet Genomics 265:1022–1030PubMedGoogle Scholar
  44. Huang Q, Tonge PJ, Slayden RA, Kirikae T, Ojima I (2007) FtsZ: a novel target for tuberculosis drug discovery. Curr Top Med Chem 7:527–543PubMedGoogle Scholar
  45. Iwai N, Nagai K, Wachi M (2002) Novel S-benzylisothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shape-determining protein(s) other than penicillin-binding protein 2. Biosci Biotechnol Biochem 66:2658–2662PubMedGoogle Scholar
  46. James GA, Korber DR, Caldwell DE, Costerton JW (1995) Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J Bacteriol 177:907–915PubMedGoogle Scholar
  47. Kang CM, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN (2005) The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19:1692–1704PubMedGoogle Scholar
  48. Kang CM, Nyayapathy S, Lee JY, Suh JW, Husson RN (2008) Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in Mycobacteria. Microbiology 154:725–735PubMedGoogle Scholar
  49. Kempel AM, Kantlay S, Molle V, Wang S, Olsson E, Naldrett MJ, Saalbach G, Parker J, Jung Y, Lenman M, Andreasson E, Dyson PJ, Petrickova K, Bibb MJ, Buttner MJ, Flärdh K (2009) The Streptomyces apical growth determinant DivIVA is phosphorylated by the Ser/Thr protein kinase AfsK. In: 3rd ASM conference on prokaryotic development, Cambridge, MA, Poster 54AGoogle Scholar
  50. Kinoshita S, Udaka S, Shimono T (1957) Studies on the amino acid fermentation. Part I. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205Google Scholar
  51. Kobayashi M, Asai Y, Hatakeyama K, Kijima N, Wachi M, Nagai K, Yukawa H (1997) Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria. Biochem Biophys Res Commun 236:383–388PubMedGoogle Scholar
  52. Lange R, Hengge-Aronis R (1991) Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J Bacteriol 173:4474–4481PubMedGoogle Scholar
  53. Lea-Smith DJ, Pyke JS, Tull D, McConville MJ, Coppel RL, Crellin PK (2007) The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan. J Biol Chem 282:11000–11008PubMedGoogle Scholar
  54. Letek M, Ordoñez E, Fernandez-Natal I, Gil JA, Mateos LM (2006) Identification of the emerging skin pathogen Corynebacterium amycolatum using PCR-amplification of the essential divIVA gene as a target. FEMS Microbiol Lett 265:256–263PubMedGoogle Scholar
  55. Letek M, Fiuza M, Ordoñez E, Villadangos AF, Ramos A, Mateos LM, Gil JA (2008a) Cell growth and cell division in the rod-shaped actinomycete Corynebacterium glutamicum. Antonie Van Leeuwenhoek 94:99–109PubMedGoogle Scholar
  56. Letek M, Ordoñez E, Vaquera J, Margolin W, Flardh K, Mateos LM, Gil JA (2008b) DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J Bacteriol 190:3283–3292PubMedGoogle Scholar
  57. Letek M, Fiuza M, Ordoñez E, Villadangos AF, Flardh K, Mateos LM, Gil JA (2009) DivIVA uses an N-terminal conserved region and two coiled-coil domains to localize and sustain the polar growth in Corynebacterium glutamicum. FEMS Microbiol Lett 297:110–116PubMedGoogle Scholar
  58. Luscombe B, Gray T (1974) Characteristics of Arthrobacter grown in continuous culture. J Gen Microbiol 82:213–222Google Scholar
  59. Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6:862–871PubMedGoogle Scholar
  60. Mishra AK, Alderwick LJ, Rittmann D, Wang C, Bhatt A, Jacobs WR Jr, Takayama K, Eggeling L, Besra GS (2008) Identification of a novel alpha(1–>6) mannopyranosyltransferase MptB from Corynebacterium glutamicum by deletion of a conserved gene, NCgl1505, affords a lipomannan- and lipoarabinomannan-deficient mutant. Mol Microbiol 68:1595–1613PubMedGoogle Scholar
  61. Molle V, Kremer L (2010) Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol Microbiol 75:1064–1077PubMedGoogle Scholar
  62. Muchova K, Kutejova E, Scott DJ, Brannigan JA, Lewis RJ, Wilkinson AJ, Barak I (2002) Oligomerization of the Bacillus subtilis division protein DivIVA. Microbiology 148:807–813PubMedGoogle Scholar
  63. Nguyen L, Scherr N, Gatfield J, Walburger A, Pieters J, Thompson CJ (2007) Antigen 84, an effector of pleiomorphism in Mycobacterium smegmatis. J Bacteriol 189:7896–7910PubMedGoogle Scholar
  64. Ogino H, Teramoto H, Inui M, Yukawa H (2008) DivS, a novel SOS-inducible cell division suppressor in Corynebacterium glutamicum. Mol Microbiol 67:597–608PubMedGoogle Scholar
  65. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223PubMedGoogle Scholar
  66. Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75PubMedGoogle Scholar
  67. Ordoñez E, Letek M, Valbuena N, Gil JA, Mateos LM (2005) Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71:6206–6215PubMedGoogle Scholar
  68. Ordoñez E, Thiyagarajan S, Cook JD, Stemmler TL, Gil JA, Mateos LM, Rosen BP (2008) Evolution of metal(loid) binding sites in transcriptional regulators. J Biol Chem 283:25706–25714PubMedGoogle Scholar
  69. Ordoñez E, Van BK, Roos G, De GS, Letek M, Gil JA, Wyns L, Mateos LM, Messens J (2009) Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange. J Biol Chem 284:15107–15116PubMedGoogle Scholar
  70. Pallerla SR, Knebel S, Polen T, Klauth P, Hollender J, Wendisch VF, Schoberth SM (2005) Formation of volutin granules in Corynebacterium glutamicum. FEMS Microbiol Lett 243:133–140PubMedGoogle Scholar
  71. Paradis-Bleau C, Sanschagrin F, Levesque RC (2004) Identification of Pseudomonas aeruginosa FtsZ peptide inhibitors as a tool for development of novel antimicrobials. J Antimicrob Chemother 54:278–280PubMedGoogle Scholar
  72. Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Schechter E, Leblon G (1993) Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol 9:97–109PubMedGoogle Scholar
  73. Pinho MG, Errington J (2003) Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Mol Microbiol 50:871–881PubMedGoogle Scholar
  74. Pinho MG, Errington J (2004) A divIVA null mutant of Staphylococcus aureus undergoes normal cell division. FEMS Microbiol Lett 240:145–149PubMedGoogle Scholar
  75. Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffe M (2001) Structure of the cell envelope of Corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382PubMedGoogle Scholar
  76. Radmacher E, Alderwick LJ, Besra GS, Brown AK, Gibson KJ, Sahm H, Eggeling L (2005) Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. Microbiology 151:2421–2427PubMedGoogle Scholar
  77. Ramirez-Arcos S, Liao M, Marthaler S, Rigden M, Dillon AJ (2005) Enterococcus faecalis divIVA: an essential gene involved in cell division, cell growth and chromosome segregation. Microbiology 151:1381–1393PubMedGoogle Scholar
  78. Ramos A, Honrubia MP, Valbuena N, Vaquera J, Mateos LM, Gil JA (2003) Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. Microbiology 149:3531–3542PubMedGoogle Scholar
  79. Ramos A, Honrubia MP, Vega D, Ayala JA, Bouhss A, Mengin-Lecreulx D, Gil JA (2004) Characterization and chromosomal organization of the murD-murC-ftsQ region of Corynebacterium glutamicum ATCC 13869. Res Microbiol 155:174–184PubMedGoogle Scholar
  80. Ramos A, Letek M, Campelo AB, Vaquera J, Mateos LM, Gil JA (2005) Altered morphology produced by ftsZ expression in Corynebacterium glutamicum ATCC 13869. Microbiology 151:2563–2572PubMedGoogle Scholar
  81. Sall T, Mudd S, Takagi A (1958) Polyphosphate accumulation and utilization as related to synchronized cell division of Corynebacterium diphtheriae. J Bacteriol 76:640–645PubMedGoogle Scholar
  82. Santos JM, Freire P, Vicente M, Arraiano CM (1999) The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol Microbiol 32:789–798PubMedGoogle Scholar
  83. Santos JM, Lobo M, Matos AP, de Pedro MA, Arraiano CM (2002) The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol Microbiol 45:1729–1740PubMedGoogle Scholar
  84. Scheffers DJ (2005) Dynamic localization of penicillin-binding proteins during spore development in Bacillus subtilis. Microbiology 151:999–1012PubMedGoogle Scholar
  85. Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, Bott M (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74:724–741PubMedGoogle Scholar
  86. Seidel M, Alderwick LJ, Birch HL, Sahm H, Eggeling L, Besra GS (2007a) Identification of a novel arabinofuranosyltransferase AftB involved in a terminal step of cell wall arabinan biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 282:14729–14740PubMedGoogle Scholar
  87. Seidel M, Alderwick LJ, Sahm H, Besra GS, Eggeling L (2007b) Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis. Glycobiology 17:210–219PubMedGoogle Scholar
  88. Stahlberg H, Kutejova E, Muchova K, Gregorini M, Lustig A, Müller SA, Olivieri V, Engel A, Wilkinson AJ, Barak I (2004) Oligomeric structure of the Bacillus subtilis cell division protein DivIVA determined by transmission electron microscopy. Mol Microbiol 52:1281–1290PubMedGoogle Scholar
  89. Stokes NR, Sievers J, Barker S, Bennett JM, Brown DR, Collins I, Errington VM, Foulger D, Hall M, Halsey R, Johnson H, Rose V, Thomaides HB, Haydon DJ, Czaplewski LG, Errington J (2005) Novel inhibitors of bacterial cytokinesis identified by a cell-based antibiotic screening assay. J Biol Chem 280:39709–39715PubMedGoogle Scholar
  90. Szekely R, Waczek F, Szabadkai I, Nemeth G, Hegymegi-Barakonyi B, Eros D, Szokol B, Pato J, Hafenbradl D, Satchell J, Saint-Joanis B, Cole ST, Orfi L, Klebl BM, Keri G (2008) A novel drug discovery concept for tuberculosis: inhibition of bacterial and host cell signalling. Immunol Lett 116:225–231PubMedGoogle Scholar
  91. Tamames J, González-Moreno M, Mingorance J, Valencia A, Vicente M (2001) Bringing gene order into bacterial shape. Trends Genet 17:124–126PubMedGoogle Scholar
  92. Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, Kalinowski J, Meyer F, Rupp O, Schneiker S, Viehoever P, Pühler A (2005) Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187:4671–4682PubMedGoogle Scholar
  93. Thakur M, Chakraborti PK (2006) GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J Biol Chem 281:40107–40113PubMedGoogle Scholar
  94. Thakur M, Chakraborti PK (2008) Ability of PknA, a mycobacterial eukaryotic-type serine/threonine kinase, to transphosphorylate MurD, a ligase involved in the process of peptidoglycan biosynthesis. Biochem J 415:27–33PubMedGoogle Scholar
  95. Thomaides HB, Freeman M, El Karoui M, Errington J (2001) Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 15:1662–1673PubMedGoogle Scholar
  96. Tsao DH, Sutherland AG, Jennings LD, Li Y, Rush TS III, Alvarez JC, Ding W, Dushin EG, Dushin RG, Haney SA, Kenny CH, Malakian AK, Nilakantan R, Mosyak L (2006) Discovery of novel inhibitors of the ZipA/FtsZ complex by NMR fragment screening coupled with structure-based design. Bioorg Med Chem 14:7953–7961PubMedGoogle Scholar
  97. Tsuge Y, Ogino H, Teramoto H, Inui M, Yukawa H (2008) Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R. J Bacteriol 190:8204–8214PubMedGoogle Scholar
  98. Umeda A, Amako K (1983) Growth of the surface of Corynebacterium diphtheriae. Microbiol Immunol 27:663–671PubMedGoogle Scholar
  99. Valbuena N, Letek M, Ramos A, Ayala J, Nakunst D, Kalinowski J, Mateos LM, Gil JA (2006) Morphological changes and proteome response of Corynebacterium glutamicum to a partial depletion of FtsI. Microbiology 152:2491–2503PubMedGoogle Scholar
  100. Valbuena N, Letek M, Ordoñez E, Ayala J, Daniel RA, Gil JA, Mateos LM (2007) Characterization of HMW-PBPs from the rod-shaped actinomycete Corynebacterium glutamicum: peptidoglycan synthesis in cells lacking actin-like cytoskeletal structures. Mol Microbiol 66:643–657PubMedGoogle Scholar
  101. Vicente M, Hodgson J, Massidda O, Tonjum T, Henriques-Normark B, Ron EZ (2006) The fallacies of hope: will we discover new antibiotics to combat pathogenic bacteria in time? FEMS Microbiol Rev 30:841–852PubMedGoogle Scholar
  102. Wachi M, Wijayarathna CD, Teraoka H, Nagai K (1999) A murC gene from coryneform bacteria. Appl Microbiol Biotechnol 51:223–228PubMedGoogle Scholar
  103. Wang J, Galgoci A, Kodali S, Herath KB, Jayasuriya H, Dorso K, Vicente F, Gonzalez A, Cully D, Bramhill D, Singh S (2003) Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J Biol Chem 278:44424–44428PubMedGoogle Scholar
  104. Wang SB, Cantlay S, Nordberg N, Letek M, Gil JA, Flardh K (2009) Domains involved in the in vivo function and oligomerization of apical growth determinant DivIVA in Streptomyces coelicolor. FEMS Microbiol Lett 297:101–109PubMedGoogle Scholar
  105. Wehenkel A, Fernandez P, Bellinzoni M, Catherinot V, Barilone N, Labesse G, Jackson M, Alzari PM (2006) The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in Mycobacteria. FEBS Lett 580:3018–3022PubMedGoogle Scholar
  106. White EL, Suling WJ, Ross LJ, Seitz LE, Reynolds RC (2002) 2-Alkoxycarbonylaminopyridines: inhibitors of Mycobacterium tuberculosis FtsZ. J Antimicrob Chemother 50:111–114PubMedGoogle Scholar
  107. Wijayarathna CD, Wachi M, Nagai K (2001) Isolation of ftsI and murE genes involved in peptidoglycan synthesis from Corynebacterium glutamicum. Appl Microbiol Biotechnol 55:466–470PubMedGoogle Scholar
  108. Woldringh CL, Mulder E, Huls PG, Vischer N (1991) Toporegulation of bacterial division according to the nucleoid occlusion model. Res Microbiol 142:309–320PubMedGoogle Scholar
  109. Wu LJ, Errington J (2004) Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117:915–925PubMedGoogle Scholar
  110. Zervosen A, Lu WP, Chen Z, White RE, Demuth TP Jr, Frere JM (2004) Interactions between penicillin-binding proteins (PBPs) and two novel classes of PBP inhibitors, arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones. Antimicrob Agents Chemother 48:961–969PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michal Letek
    • 1
  • María Fiuza
    • 1
  • Almudena F. Villadangos
    • 1
  • Luís M. Mateos
    • 1
  • José A. Gil
    • 2
  1. 1.Departamento de Biología Molecular, Área de Microbiología, Facultad de Biología, Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC)Universidad de LeónLeónSpain
  2. 2.Molecular Biology Department, Faculty of BiologyUniversity of LeonLeónSpain

Personalised recommendations