Optimization-Based Modeling with Applications to Transport: Part 3. Computational Studies

  • Denis Ridzal
  • Joseph Young
  • Pavel Bochev
  • Kara Peterson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

This paper is the final of three related articles that develop and demonstrate a new optimization-based framework for computational modeling. The framework uses optimization and control ideas to assemble and decompose multiphysics operators and to preserve their fundamental physical properties in the discretization process. One application of the framework is in the formulation of robust algorithms for optimization-based transport (OBT). Based on the theoretical foundations established in Part 1 and the optimization algorithm for the solution of the remap subproblem, derived in Part 2, this paper focuses on the application of OBT to a set of benchmark transport problems. Numerical comparisons with two other transport schemes based on incremental remapping, featuring flux-corrected remap and the linear reconstruction with van Leer limiting, respectively, demonstrate that OBT is a competitive transport algorithm.

Keywords

Sandia National Laboratory Solid Body Rotation Transport Scheme Linear Reconstruction Fundamental Physical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bochev, P., Ridzal, D., Young, D.: Optimization–Based Modeling with Applications to Transport. Part 1. Abstract Formulation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 63–71. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Bochev, P., Ridzal, D., Scovazzi, G., Shashkov, M.: Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary lagrangian-eulerian methods. Journal of Computational Physics 230(13), 5199–5225 (2011), http://www.sciencedirect.com/science/article/B6WHY-52F895B-2/2/5e30ada70a5c6053464dfe9ceb74cf26 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Dukowicz, J.K., Baumgardner, J.R.: Incremental remapping as a transport/advection algorithm. Journal of Computational Physics 160(1), 318–335 (2000), http://www.sciencedirect.com/science/article/B6WHY-45FC8N8-6F/2/179cbfc9634bb79579b68754cebd5525 MATHCrossRefGoogle Scholar
  4. 4.
    LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM Journal on Numerical Analysis 33(2), 627–665 (1996), http://link.aip.org/link/?SNA/33/627/1 MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Liska, R., Shashkov, M., Váchal, P., Wendroff, B.: Optimization-based synchronized flux-corrected conservative interpolation (remapping) of mass and momentum for arbitrary Lagrangian-Eulerian methods. J. Comput. Phys. 229, 1467–1497 (2010), http://dx.doi.org/10.1016/j.jcp.2009.10.039 MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Margolin, L.G., Shashkov, M.: Second-order sign-preserving conservative interpolation (remapping) on general grids. J. Comput. Phys. 184(1), 266–298 (2003)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Young, J., Ridzal, D., Bochev, P.: Optimization–Based Modeling with Applications to Transport. Part 2. Optimization Algorithm. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 72–80. Springer, Heidelberg (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Denis Ridzal
    • 2
  • Joseph Young
    • 1
  • Pavel Bochev
    • 1
  • Kara Peterson
    • 1
  1. 1.Numerical Analysis and ApplicationsSandia National LaboratoriesAlbuquerqueUSA
  2. 2.Optimization and Uncertainty QuantificationSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations