Advertisement

An Inverse Problem for the Stationary Kirchhoff Equation

  • Tchavdar T. Marinov
  • Rossitza Marinova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

This work is concerned with the development of numerical methods and algorithms for solving the inverse problem for parameter identification from over-determined data in Kirchhoff plate equations. A technique called Method of Variational Imbedding is used for solving the inverse problem. The original inverse problem is replaced by a minimization problem. The Euler-Lagrange equations comprise a higher-order system of equations for the solution of the original equation and for the coefficients. In the present work, difference scheme and numerical algorithm for solving the Euler-Lagrange system are proposed. Results for different values of the governing parameters and the physical relevance are presented.

Keywords

Inverse Problem Original Equation Plate Equation Additional Boundary Condition Fourth Order Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christov, C.I.: A method for identification of homoclinic trajectories. In: Proc. 14-th Spring Conf., Sunny Beach, Union of Bulg. Mathematicians, Sofia, Bulgaria (1985)Google Scholar
  2. 2.
    Christov, C.I., Marinov, T.T.: Identification of heat-conduction coefficient via method of variational imbedding. Mathematics and Computer Modeling 27(3), 109–116 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Hadamard, J.: Le Probleme de Cauchy et les Equations aux Derivatives Partielles Lineares Hyperboliques. Hermann, Paris (1932)Google Scholar
  4. 4.
    Lattès, R., Lions, J.L.: Mèthode de quasi-reversibilite et applications. Dunod, Paris (1967)zbMATHGoogle Scholar
  5. 5.
    Lesnic, D., Elliott, L., Ingham, D.B.: Analysis of coefficient identification problems associated to the inverse Euler-Bernoulli beam theory. IMA J. of Applied Math. 62, 101–116 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Marinov, T.T., Christov, C.I.: Identification the unknown coefficient in Ordinary Differential Equations via Method of Variational Imbedding. In: Deville, M., Owens, R. (eds.) 16th IMACS World Congress 2000 Proceedings, paper 134–2. Rutgers University, New Brunswick (2000) ISBN 3-9522075-1-9Google Scholar
  7. 7.
    Marinov, T.T., Christov, C.I., Marinova, R.S.: Novel numerical approach to solitary-wave solutions identification of Boussinesq and Korteweg-de Vries equations. Int. J. of Bifurcation and Chaos 15(2), 557–565 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Marinov, T.T., Marinova, R.S., Christov, C.I.: Coefficient Identification in Elliptic Partial Differential Equation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 372–379. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Marinov, T.T., Vatsala, A.: Inverse Problem for Coefficient Identification in Euler-Bernoulli Equation. Computers and Mathematics with Applications 56(2), 400–410 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Tikhonov, A.N., Arsenin, V.: Methods for Solving Incorrect Problems. Nauka, Moscow (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tchavdar T. Marinov
    • 1
  • Rossitza Marinova
    • 2
  1. 1.Department of Natural SciencesSouthern University at New OrleansNew OrleansUSA
  2. 2.Department of Mathematical and Computing SciencesConcordia University College of AlbertaEdmontonCanada

Personalised recommendations