Advertisement

Some Aspects of Impact in the Potential Climate Change on Ozone Pollution Levels over Bulgaria from High Resolution Simulations

  • Hristo Chervenkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

According to the European Environment Agency (EEA), the ground-level ozone is one of the most serious air pollutants in Europe today. High levels of ozone can affect the respiratory system and increases morbidity and mortality, particularly in sensitive groups of the population. Ozone also damages vegetation, reduces crop yields and corrodes technological materials. Ozone pollution is pronounced in regions with strong photochemical activity, such as the Mediterranean basin and Balkan Peninsula. Due to its central location in the second region, Bulgaria may be considered as a hot-spot for ozone and representative of ozone effects on Balkan ecosystems. Ozone concentrations are highly dependent on environmental conditions, including temperature. It is thought to be likely that long-term changes in climate will affect levels of future ozone pollution. Based on the calculated and accumulated in NIMH - Bulgaria during the CECILIA WP7-program data, scope of the presented work is to investigate the changes in ozone pollution levels, expressed with some exposure indices, due to climate change in Southeastern Europe.

Keywords

Ozone pollution exposure index ecological impact climate change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amann, M., Bertok, I., Cofala, J., Gyarfas, F., Heyes, C., Klimont, Z., et al.: Baseline scenarios for the clean air for Europe (CAFE) programme. Final Report, p. 79. IIASA, Laxenburg (2005)Google Scholar
  2. 2.
    Andersson, C., Engardt, M.: European ozone in a future climate: Importance of changes in dry deposition and isoprene emissions. J. Geophys. Res. 115, D02303 (2010), doi:10.1029/2008JD011690CrossRefGoogle Scholar
  3. 3.
    Bell, M.L., Goldberg, R., Hogrefe, C., Kinney, P.L., Knowlton, K., Lynn, B.: Climate change, ambient ozone, and health in 50 US cities. Clim. Change 82, 61–76 (2007)CrossRefGoogle Scholar
  4. 4.
    Carvalho, A., Monteiro, A., Solman, S., et al.: Climate-driven changes in air quality over Europe by the end of the 21st century, with special reference to Portugal. Environmental Science & Policy 13, 445–458 (2010)CrossRefGoogle Scholar
  5. 5.
    Dentener, F., Stevenson, D., Ellingsen, K., van Noije, T., Schultz, M., Amann, M., Atherton, C., Bell, N., Bergmann, D., Bey, I., Bouwman, L., Butler, T., Cofala, J., Collins, B., Drevet, J., Doherty, R., Eickhout, B., Eskes, H., Fiore, A., Gauss, M., Hauglustaine, D., Horowitz, L., Isaksen, I.S.A., Josse, B., Lawrence, M., Krol, M., Lamarque, J.F., Montanaro, V., Muller, J.F., Peuch, V.H., Pitari, G., Pyle, J., Rast, S., Rodriguez, J., Sanderson, M., Savage, N.H., Shindell, D., Strahan, S., Szopa, S., Sudo, K., Van Dingenen, R., Wild, O., Zeng, G.: The Global Atmospheric Environment for the Next Generation. Environ. Sci. Technol. 40(11), 3586–3594 (2006), doi:10.1021/es0523845CrossRefGoogle Scholar
  6. 6.
    EEA Report 2/2007. Air pollution in Europe 1990-2004, ISSN 1725-9177Google Scholar
  7. 7.
    EEA Technical report 7/2009, Assessment of ground-level ozone in EEA member countries, with a focus on long-term trends, ISSN 1725-2237Google Scholar
  8. 8.
    EPA: Climate Change Impacts on Regional Air Quality Report, U.S. Environmental Protection Agency, EPA (2009)Google Scholar
  9. 9.
    Engardt, M., Bergstrom, R., Andersson, C.: Climate and Emission Changes Contributing to Changes in Near-surface Ozone in Europe over the Coming Decades: Results from Model Studies Ambio 38(8), 452–458 (2009)Google Scholar
  10. 10.
    EC: Directive 2002/3/EC of the European Parliament and the Council relating to ozone in ambient air (’Third Daughter Directive’). OJ L 67, 14–30 (March 09, 2002)Google Scholar
  11. 11.
    Hauglustaine, D.A., Lathiere, J., Szopa, S., Folberth, G.A.: Future tropospheric ozone simulated with a climate-chemistry biosphere model. Geophys. Res. Lett. 32, L24807 (2005), doi:10.1029/2005GL024031CrossRefGoogle Scholar
  12. 12.
    Juda-Rezler, K., Zanis, P., Syrakov, D., Reizer, M., Chervenkov, H., Huszar, P., Melas, D., Krueger, B., Trapp, W., Halenka, T.: On the effect of climate change on regional air quality over Europe: concept, evaluation and future projections. Clim. Res., CECILIA Special Issue (in press, 2012)Google Scholar
  13. 13.
    Mahmud, A., Tyree, M., Cayan, D., Motallebi, N., Kleeman, M.J.: Statistical downscaling of climate change impacts on ozone concentrations in California. J. Geophys. Res. 113, D21103 (2008), doi:10.1029/2007JD009534CrossRefGoogle Scholar
  14. 14.
    Meleux, F., Solmon, F., Giorgi, F.: Increase in summer European ozone amounts due to climate change. Atmos. Environ. 41(35), 7577–7587 (2007)CrossRefGoogle Scholar
  15. 15.
    Nolte, C.G., Gilliland, A.B., Hogrefe, C., Mickley, L.J.: Linking global to regional models to assess future climate impacts on surface ozone levels in the United States. J. Geophys. Res. 113, D14307 (2008), doi:10.1029/2007JD008497CrossRefGoogle Scholar
  16. 16.
    Paoletti, E., De Marco, A., Racalbuto, S.: Why Should We Calculate Complex Indices of Ozone Exposure? Results from Mediterranean Background Sites Environ Monit Assess 128, 19–30 (2007), doi:10.1007/s10661-006-9412-5Google Scholar
  17. 17.
    Racherla, P.N., Adams, P.J.: Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. J. Geophys. Res. 111, D24103 (2006), doi:10.1029/2005JD006939CrossRefGoogle Scholar
  18. 18.
    Racherla, P.N., Adams, P.J.: The response of surface ozone to climate change over the Eastern United States. Atmos. Chem. Phys. 8, 871–885 (2008)CrossRefGoogle Scholar
  19. 19.
    Solberg, S., Hov, Ø., Søvde, A., Isaksen, I.S.A., Coddeville, P., De Backer, H., Forster, C., Orsolini, Y., Uhse, K.: European surface ozone in the extreme summer. J. Geophys. Res. 113, D07307 (2008)CrossRefGoogle Scholar
  20. 20.
    Syrakov, D., Prodanova, M., Miloshev, N., Ganev, K., Jordanov, G., Spiridonov, V., Bogatchev, A., Katragkou, E., Melas, D., Poupkou, A., Markakis, K.: Climate Change Impact Assessment of Air Pollution Levels in Bulgaria. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 538–545. Springer, Heidelberg (2010) ISSN: 0302-9743CrossRefGoogle Scholar
  21. 21.
    Szopa, S., Hauglustaine, D.A., Vautard, R., Menut, L.: Future global tropospheric ozone changes and impact on European air quality. Geophys. Res. Lett. 33, L18805 (2006), doi:10.1029/2006GL25860CrossRefGoogle Scholar
  22. 22.
    WHO: WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update, summary of risk assessment. WHO/SDE/PHE/ OEH06.02 (2006)Google Scholar
  23. 23.
    Zlatev, Z.: Impact of future climatic changes on high ozone levels in European suburban areas. Clim. Change (2009), doi:10.1007/s10584-009-9699-7Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hristo Chervenkov
    • 1
  1. 1.National Institute of Meteorology and Hydrology, branch PlovdivBulgarian Academy of SciencesPlovdivBulgaria

Personalised recommendations