Advertisement

A Hybrid Genetic Algorithm for Parameter Identification of Bioprocess Models

  • Olympia Roeva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

In this paper a hybrid scheme using GA and SQP method is introduced. In the hybrid GA-SQP the role of the GA is to explore the search place in order to either isolate the most promising region of the search space. The role of the SQP is to exploit the information gathered by the GA. To demonstrate the usefulness of the presented approach, two cases for parameter identification of different complexity are considered. The hybrid scheme is applied for modeling of E. coli MC4110 fed-batch cultivation process. The results show that the GA-SQP takes the advantages of both GA’s global search ability and SQP’s local search ability, hence enhances the overall search ability and computational efficiency.

Keywords

Genetic Algorithm Local Search Sequential Quadratic Programming Hybrid Scheme Hybrid Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akpınar, S., Bayhan, G.M.: A Hybrid Genetic Algorithm for Mixed Model Assembly Line Balancing Problem with Parallel Workstations and Zoning Constraints. Engineering Applications of Artificial Intelligence 24(3), 449–457 (2011)CrossRefGoogle Scholar
  2. 2.
    Benjamin, K.K., Ammanuel, A.N., David, A., Benjamin, Y.K.: Genetic Algorithm using for a Batch Fermentation Process Identification. J. of Applied Sciences 8(12), 2272–2278 (2008)CrossRefGoogle Scholar
  3. 3.
    Byrd, R.H., Curtis, F.E., Nocedal, J.: Infeasibility Detection and SQP Methods for Nonlinear Optimization. SIAM Journal on Optimization 20, 2281–2299 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Massachusetts (1989)zbMATHGoogle Scholar
  5. 5.
    Gill, P.E., Wong, E.: Sequential Quadratic Programming Methods, UCSD Department of Mathematics, Technical Report NA-10-03 (2010)Google Scholar
  6. 6.
    Levisauskas, D., Galvanauskas, V., Henrich, S., Wilhelm, K., Volk, N., Lubbert, A.: Model-based Optimization of Viral Capsid Protein Production in Fed-batch Culture of Recombinant Escherichia coli. Biopr. & Biosys. Eng. 25, 255–262 (2003)Google Scholar
  7. 7.
    Mateus da Silva, F.J., Pérez, J.M.S., Pulido, J.A.G., Rodríguez, M.A.V.: AlineaGA - A Genetic Algorithm with Local Search Optimization for Multiple Sequence Alignment. Appl. Intell. 32, 164–172 (2010)CrossRefGoogle Scholar
  8. 8.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  9. 9.
    Paplinski, J.P.: The Genetic Algorithm with Simplex Crossover for Identification of Time Delays. Intelligent Information Systems, 337–346 (2010)Google Scholar
  10. 10.
    Roeva, O.: Improvement of Genetic Algorithm Performance for Identification of Cultivation Process Models, Advanced Topics on Evolutionary Computing. Artificial Intelligence Series-WSEAS, pp. 34–39 (2008)Google Scholar
  11. 11.
    Roeva, O.: Parameter Estimation of a Monod-Type Model Based on Genetic Algorithms and Sensitivity Analysis. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2007. LNCS, vol. 4818, pp. 601–608. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Roeva, O., Pencheva, T., Hitzmann, B., Tzonkov, S.: A Genetic Algorithms Based Approach for Identification of Escherichia coli Fed-batch Fermentation. Int. J. Bioautomation 1, 30–41 (2004)Google Scholar
  13. 13.
    Tseng, L.-Y., Lin, Y.-T.: A Hybrid Genetic Local Search Algorithm for the Permutation Flowshop Scheduling Problem. European J. of Operational Res. 198(1), 84–92 (2009)zbMATHCrossRefGoogle Scholar
  14. 14.
    Zelic, B., Vasic-Racki, D., Wandrey, C., Takors, R.: Modeling of the Pyruvate Production with Escherichia coli in a Fed-batch Bioreactor. Biopr. & Biosys. Eng. 26, 249–258 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olympia Roeva
    • 1
  1. 1.Institute of Biophysics and Biomedical EngineeringBASSofiaBulgaria

Personalised recommendations