User-Centric Optimization with Evolutionary and Memetic Systems

  • Javier Espinar
  • Carlos Cotta
  • Antonio J. Fernández-Leiva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)


One of the lessons learned in the last years in the metaheuristics community, and most prominently in the area of evolutionary computation (EC), is the need of exploiting problem knowledge in order to come up with effective optimization tools. This problem-knowledge can be provided in a variety of ways, but there are situations in which endowing the optimization algorithm with this knowledge is a very elusive task. This may be the case when this problem-awareness is hard to encapsulate within a specific algorithmic description, e.g., they belong more to the space of human-expert’s intuition than elsewhere. An extreme case of this situation can take place when the evaluation itself of solutions is not algorithmic, but needs the introduction of a human to critically assess the quality of solutions. The above use of a combined human-user/evolutionary-algorithm approach is commonly termed interactive EC. The term user-centric EC is however more appropriate since it hints possibilities for the system to be proactive rather than merely interactive, i.e., to anticipate some of the user behavior and/or exhibit some degree of creativity. Such features constitute ambitious goals that require a good grasp of the basic underlying issues surrounding interactive optimization. An overview of these is presented in this paper, along with some hints on what the future may bring to this area. An application example is provided in the context of the search for Optimal Golomb Rulers, a very hard combinatorial problem.


Local Search Evolutionary Algorithm Pareto Front Evolutionary Computation Memetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babcock, W.C.: Intermodulation interference in radio systems. Bell Systems Technical Journal, 63–73 (1953)Google Scholar
  2. 2.
    Breukelaar, R., Emmerich, M., Bäck, T.: On Interactive Evolution Strategies. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 530–541. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Cotta, C., Fernández, A.: A Hybrid GRASP – Evolutionary Algorithm Approach to Golomb Ruler Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 481–490. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Cotta, C., Dotú, I., Fernández, A.J., Hentenryck, P.V.: Local search-based hybrid algorithms for finding Golomb rulers. Constraints 12(3), 263–291 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cotta, C., Fernández-Leiva, A.J.: Bio-inspired Combinatorial Optimization: Notes on Reactive and Proactive Interaction. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part II. LNCS, vol. 6692, pp. 348–355. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Eiben, A.E., Smith, J.E.: Introduction to evolutionary computation. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Hart, W.E., Belew, R.K.: Optimizing an arbitrary function is hard for the genetic algorithm. In: Belew, R.K., Booker, L.B. (eds.) 4th International Conference on Genetic Algorithms, pp. 190–195. Morgan Kaufmann, San Mateo CA (1991)Google Scholar
  8. 8.
    Houck, C., Joines, J., Kay, M., Wilson, J.: Empirical investigation of the benefits of partial Lamarckianism. Evolutionary Computation 5(1), 31–60 (1997)CrossRefGoogle Scholar
  9. 9.
    Moscato, P., Cotta, C.: A modern introduction to memetic algorithms. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, 2nd edn. International Series in Operations Research and Management Science, vol. 146, pp. 141–183. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Ohsaki, M., Takagi, H., Ohya, K.: An input method using discrete fitness values for interactive GA. Journal of Intelligent and Fuzzy Systems 6(1), 131–145 (1998)Google Scholar
  11. 11.
    Puchinger, J., Raidl, G.R.: Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005, Part II. LNCS, vol. 3562, pp. 41–53. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Javier Espinar
    • 1
  • Carlos Cotta
    • 1
  • Antonio J. Fernández-Leiva
    • 1
  1. 1.Dept. Lenguajes y Ciencias de la Computación, ETSI InformáticaUniversidad de MálagaMálagaSpain

Personalised recommendations