Advertisement

On a Game-Method for Modelling with Intuitionistic Fuzzy Estimations: Part 1

  • Lilija Atanassova
  • Krassimir Atanassov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

A new extension of Conway’s Game of Life is introduced. It is based on a previous Conway’s game extension, given by the authors. Now we use elements of intuitionistic fuzziness that give more detailed estimations of the degrees of existence and of the non-existence of the objects occuring the cells of the game plane. Rules for the motions and rules for the interactions among the objects are dicsussed.

Keywords

Forest Stand Bulgarian Academy Partial Case Cosmic Dust Game Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atanassov, K.: On a combinatorial game-method for modelling. Advances in Modelling & Analysis 19(2), 41–47 (1994)Google Scholar
  2. 2.
    Atanassov, K.: Application of a combinatorial game-method in combinatorial geometry. Part 1: Combinatorial algorithms for solving variants of the Steiner-Rosenbaum’s problem. Advances in Modelling & Analysis 2(1-2), 23–29 (1998)Google Scholar
  3. 3.
    Atanassov, K.: Application of a combinatorial game-method in combinatorial geometry. Part 2: Algorithm for grouping and transferring of points and a general algorithm. Advances in Modelling & Analysis 2(1-2), 31–36 (1998)Google Scholar
  4. 4.
    Atanassov, K.: Two variants of intuitonistic fuzzy propositional calculus. Preprint IM-MFAIS-5-88, Sofia (1988)Google Scholar
  5. 5.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Springer Physica-Verlag, Heidelberg (1999)zbMATHGoogle Scholar
  6. 6.
    Atanassov, K.: Remarks on the conjunctions, disjunctions and implications of the intuitionistic fuzzy logic. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 9(1), 55–65 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Atanassov, K., Atanassova, L.: A game-method for modelling. In: Proc. of the 3rd International School Automation and Scientific Instrumentation, Varna, pp. 229–232 (October 1984)Google Scholar
  8. 8.
    Atanassov, K., Atanassova, L., Sasselov, D.: On the combinatorial game-metod for modelling in astronomy. Comptes Rendus de l’Academie bulgare des Sciences, Tome 47(9), 5–7 (1994)Google Scholar
  9. 9.
    Atanassov, K., Tcvetkov, R.: On Zadeh’s intuitionistic fuzzy disjusnction and conjunction. Notes on Intuitionistic Fuzzy Sets 17(1), 1–4 (2011)zbMATHGoogle Scholar
  10. 10.
    Atanassov, K., Tcvetkov, R.: On Lukasiewicz’s intuitionistic fuzzy disjusnction and conjunction. Annual of “Informatics” Section Union of Scientists in Bulgaria 3 (2010)Google Scholar
  11. 11.
    Atanassova, V., Atanassov, K.: Ant Colony Optimization Approach to Tokens’ Movement within Generalized Nets. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 240–247. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Dimitrov, D.: Modelling the growth and dynamics of forest stands by game-method. Advances in Modelling & Analysis 2(1-2), 11–22 (1998)MathSciNetGoogle Scholar
  13. 13.
    Dimitrov, D.: Modelling the growth and dynamics of forest stands by extended game-method. Advances in Modelling & Analysis 4(1-2), 7–21 (1999)MathSciNetGoogle Scholar
  14. 14.
    Dobrinkova, N., Fidanova, S., Atanassov, K.: Game-Method Model for Field Fires. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 173–179. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Kuratovski, K.: Topology. Academic Press, New York (1966)Google Scholar
  16. 16.
    Sasselov, D., Atanassov, K.: On the generalized nets realization of a combinatorial game-method for modelling in astronomy. Advances in Modelling & Analysis 23(4), 59–64 (1995)Google Scholar
  17. 17.
    Wikipedia contributors: Conway’s Game of Life. Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Conway's_Game_of_Life (accessed March 20, 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lilija Atanassova
    • 1
  • Krassimir Atanassov
    • 2
  1. 1.Institute of Information and Communication TechnologiesBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Bioinformatics and Mathematical Modelling Dept., Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations