Sensitivity Analysis for the Purposes of Parameter Identification of a S. cerevisiae Fed-Batch Cultivation

  • Maria Angelova
  • Tania Pencheva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)


The application of the sensitivity analysis to parameter identification of a S. cerevisiae fed-batch cultivation is presented. Parameter identification of a cultivation described with a fifth order non linear mathematical model is a difficult task because of the high number of parameters to be estimated. The aim of the study is the sensitivity analysis to be applied to determine the most significant parameters and to answer the question which parameters are most easily estimated. For that purpose a sensitivity model of a S. cerevisiae fed-batch cultivation is developed and as a result a stepwise parameter identification procedure is proposed.


Sensitivity Analysis Sensitivity Function Bioprocess Engineer Sensitivity Model Global Sensitivity Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chipperfield, A.J., Fleming, P., Pohlheim, H., Fonseca, C.M.: Genetic algorithm toolbox for use with MATLAB. User’s guide, version 1.2. Dept. of Automatic Control and System Engineering, University of Sheffield, UK (1994)Google Scholar
  2. 2.
    Gorry, B., Ireland, A., King, P.: Sensitivity analysis of real-time systems. World Academy of Science, Engineering and Technology 37, 12–19 (2008)Google Scholar
  3. 3.
    King, J.M.P., Titchener-Hooker, N.J., Zhou, Y.: Ranking bioprocess variables using global sensitivity analysis: a case study in centrifugation. Bioprocess and Biosystems Engineering 30(2), 123–134 (2007)CrossRefGoogle Scholar
  4. 4.
    Noycova, N.A., Gyllenberg, M.: Sensitivity analysis and parameter estimation in a model of anaerobic waste water treatment processes with substrate inhibition. Bioprocess Engineering 23, 343–349 (2000)CrossRefGoogle Scholar
  5. 5.
    Patnaik, P.R.: Transient sensitivity analysis of a cybernetic model of microbial growth on two substrates. Bioprocess Engineering 21, 135–140 (1999)CrossRefGoogle Scholar
  6. 6.
    Pencheva, T., Roeva, O., Hristozov, I.: Functional state approach to fermentation processes modelling. In: Tzonkov, S., Hitzmann, B. (eds.) Prof. Marin Drinov. Academic Publishing House, Sofia (2006)Google Scholar
  7. 7.
    Roeva, O.: Parameter Estimation of a Monod-Type Model Based on Genetic Algorithms and Sensitivity Analysis. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2007. LNCS, vol. 4818, pp. 601–608. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Roeva, O.: Sensitivity analysis of E. coli fed-batch cultivation local models. Mathematica Balkanica 4 (2011)Google Scholar
  9. 9.
    Zhang, X.-C., Visala, A., Halme, A., Linco, P.: Functional state modelling approach for bioprosesses: local models for aerobic yeast growth processes. J. Proc. Contr. 4(3), 127–134 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maria Angelova
    • 1
  • Tania Pencheva
    • 1
  1. 1.Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations