Advertisement

Reachable Sets of Impulsive Control System with Cone Constraint on the Control and Their Estimates

  • Tatiana F. Filippova
  • Oksana G. Matviychuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

The problem of estimating reachable sets of linear measure driven (impulsive) dynamical control system with uncertainty in initial data is considered. It is assumed that the impulsive controls in the dynamical system belong to the intersection of a special cone with a generalized ellipsoid both taken in the space of functions of bounded variation. The algorithms for constructing the external ellipsoidal estimates of reachable sets for such control systems are given. Numerical simulation results relating to the proposed procedures are also discussed.

Keywords

Steklov Institute Bounded Variation Admissible Control Impulsive Control Closed Convex Hull 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anan’ina, T.F.: On optimization of a controlled system in the class of generalized controls. Differ. Equ. 11(4), 595–603 (1975)MathSciNetGoogle Scholar
  2. 2.
    Chernousko, F.L.: State estimation for dynamic systems. Nauka, Moscow (1988)Google Scholar
  3. 3.
    Dykhta, V.A., Sumsonuk, O.N.: Optimal impulse control with applications. Fizmatgiz, Moscow (2000)Google Scholar
  4. 4.
    Filippova, T.F.: Set-valued solutions to impulsive differential inclusions. Math. Comput. Model. Dyn. Syst. 11, 149–158 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Filippova, T.F.: Construction of set-valued estimates of reachable sets for some nonlinear dynamical systems with impulsive control. Proceedings of the Steklov Institute of Mathematics suppl. (2), 95–102 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kostousova, E.K.: State estimation for linear impulsive differential systems through polyhedral techniques. Discrete Contin. Dyn. Syst. suppl., 466–475 (2009)MathSciNetGoogle Scholar
  7. 7.
    Krasovskii, N.N.: The theory of control of motion. Nauka, Moscow (1968)Google Scholar
  8. 8.
    Krasovskii, N.N., Subbotin, A.I.: Positional differential games. Nauka, Moscow (1974)zbMATHGoogle Scholar
  9. 9.
    Kurzhanski, A.B.: Control and observation under conditions of uncertainty. Nauka, Moscow (1977)Google Scholar
  10. 10.
    Kurzhanski, A.B., Veliov, V.M. (eds.): Set-valued analysis and differential inclusions. Progress in Systems and Control Theory, vol. 16. Birkhäuser, Basel (1990)Google Scholar
  11. 11.
    Kurzhanski, A.B., Filippova, T.F.: On the theory of trajectory tubes — a mathematical formalism for uncertain dynamics, viability and control. In: Kurzhanski, A.B. (ed.) Advances in Nonlinear Dynamics and Control: a Report from Russia. Progress in Systems and Control Theory, vol. 17, pp. 122–188. Birkhäuser, Boston (1993)CrossRefGoogle Scholar
  12. 12.
    Kurzhanski, A.B., Valyi, I.: Ellipsoidal calculus for estimation and control. Birkhäuser, Basel (1997)zbMATHGoogle Scholar
  13. 13.
    Matviychuk, O.G.: Estimation problem for linear impulsive control systems under uncertainty. In: Fortuna, L., Fradkov, A., Frasca, M. (eds.) From Physics To Control Through An Emergent View, Singapore. World Scientific Series on Nonlinear Science, Series B, vol. 15, pp. 271–276 (2010)Google Scholar
  14. 14.
    Miller, B.M.: The generalized solutions of nonlinear optimization problems with impulse control. SIAM J. Control Optim. 34(4), 1420–1440 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Pereira, F.L., Filippova, T.F.: On a solution concept to impulsive differential systems. In: Proc. of the 4th MathTools Conference, pp. 350–355. S.-Petersburg, Russia (2003)Google Scholar
  16. 16.
    Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  17. 17.
    Schweppe, F.C.: Uncertain dynamical systems. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  18. 18.
    Vinter, R.B., Pereira, F.M.F.L.: A maximum principle for optimal processes with discontinuous trajectories. SIAM J. Control Optim. 26, 155–167 (1988)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Vzdornova, O.G., Filippova, T.F.: External ellipsoidal estimates of the attainability sets of differential impulse systems. J. Comput. System Sci. 45(1), 34–43 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Vzdornova, O.G., Filippova, T.F.: Pulse control problems under ellipsoidal constraints: Constraint parameters sensitivity. Autom. Remote Control 68(11), 2015–2028 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Zavalishchin, S.T., Sesekin, A.N.: Impulsive processes. Models and applications. Nauka, Moscow (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tatiana F. Filippova
    • 1
  • Oksana G. Matviychuk
    • 1
  1. 1.Department of Optimal Control, Institute of Mathematics and MechanicsRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations