Advertisement

On the Asymptotic Stabilization of an Uncertain Bioprocess Model

  • Neli S. Dimitrova
  • Mikhail I. Krastanov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

We study a nonlinear model of a biological digestion process, involving two microbial populations and two substrates and producing biogas (methane). A feedback control law for asymptotic stabilization of the closed-loop system is proposed. An extremum seeking algorithm is applied to stabilize the system towards the maximum methane flow rate.

Keywords

Chemical Oxygen Demand Equilibrium Point Anaerobic Digestion Asymptotic Stabilization Volatile Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alcaraz-González, V., Harmand, J., Rapaport, A., Steyer, J., González–Alvarez, V., Pelayo-Ortiz, C.: Software sensors for highly uncertain WWTPs: a new apprach based on interval observers. Water Research 36, 2515–2524 (2002)CrossRefGoogle Scholar
  2. 2.
    Arsie, A., Ebenbauer, C.: Locating omega-limit sets using height functions. Journal of Differential Equations 248(10), 2458–2469 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bernard, O., Hadj-Sadok, Z., Dochain, D.: Advanced monitoring and control of anaerobic wastewate treatment plants: dynamic model development and identification. In: Proceedings of Fifth IWA Inter. Symp. WATERMATEX, Gent, Belgium, pp. 3.57–3.64 (2000)Google Scholar
  4. 4.
    Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., Steyer, J.-P.: Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnology and Bioengineering 75, 424–438 (2001)CrossRefGoogle Scholar
  5. 5.
    Dimitrova, N., Krastanov, M.I.: Nonlinear Adaptive Control of a Model of an Uncertain Fermentation Process. Int. Journ. of Robust and Nonlinear Control 20, 1001–1009 (2010)MathSciNetGoogle Scholar
  6. 6.
    El-Hawwary, M.I., Maggiore, M.: A Reduction Principles and the Stabilization of Closed Sets for Passive Systems. arXiv:0907.0686vl [mathOC], 1–25 (2009)Google Scholar
  7. 7.
    Grognard, F., Bernard, O.: Stability analysis of a wastewater treatment plant with saturated control. Water Science Technology 53, 149–157 (2006)Google Scholar
  8. 8.
    Hess, J., Bernard, O.: Design and study of a risk management criterion for an unstable anaerobic wastewater treatment process. Journal of Process Control 18(1), 71–79 (2008)CrossRefGoogle Scholar
  9. 9.
    Khalil, H.: Nonlinear Systems. Macmillan Publishing Company, New York (1992)zbMATHGoogle Scholar
  10. 10.
    Maillert, L., Bernard, O.: A simple robust controller to stabilize an anaerobic digestion processes. In: Proc. of the 8th Conference on Computer Applications in Biotechnology, Quebec, pp. 213–218 (2001)Google Scholar
  11. 11.
    Maillert, L., Bernard, O., Steyer, J.-P.: Robust regulation of anaerobic digestion processes. Water Science and Technology 48(6), 87–94 (2003)Google Scholar
  12. 12.
    Mischaikow, K., Smith, H., Tieme, H.: Asymptotically autonomous semiflows: chain recurence and Lyapunov functions. TAMS 347(5), 1669–1685 (1995)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Neli S. Dimitrova
    • 1
  • Mikhail I. Krastanov
    • 1
  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations