Optimal Control of Multibody Systems in Resistive Media

  • F. L. Chernousko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)


Locomotion of a mechanical system consisting of a main body and one or two links attached to it by cylindrical joints is considered. The system moves in a resistive medium and is controlled by periodic angular oscillations of the links relative to the main body. The resistance force acting upon each body is a quadratic function of its velocity. Under certain assumptions, a nonlinear equation of motion is derived and simplified. The optimal control of oscillations is found that corresponds to the maximal average locomotion speed.


optimal control nonlinear dynamics robotics locomotion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gray, J.: Animal Locomotion. Norton, New York (1968)Google Scholar
  2. 2.
    Lighthill, J.: Mathematical Biofluiddynamics. SIAM, Philadelphia (1975)zbMATHCrossRefGoogle Scholar
  3. 3.
    Blake, R.W.: Fish Locomotion. Cambridge University Press, Cambridge (1983)Google Scholar
  4. 4.
    Hirose, S.: Biologically Inspired Robots: Snake-like Locomotors and Manipulators. Oxford University Press, Oxford (1993)Google Scholar
  5. 5.
    Chernousko, F.L.: Controllable motions of a two-link mechanism along a horizontal plane. J. Appl. Math. Mech. 65, 565–577 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chernousko, F.L.: Snake-like locomotions of multilink mechanisms. J. Vibration Control 9, 237–256 (2003)MathSciNetGoogle Scholar
  7. 7.
    Chernousko, F.L.: Modelling of snake-like locomotion. J. Appl. Math. Comput. 164, 415–434 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Terada, Y., Yamamoto, I.: Development of oscillating fin propulsion system and its application to ships and artificial fish. Mitsubishi Heavy Industries Tech. Review 36, 84–88 (1999)Google Scholar
  9. 9.
    Mason, R., Burdick, J.: Construction and modelling of a carangiform robotic fish. In: Korcke, P., Trevelyan, J. (eds.) Experimental Robotics VI. LNCIS, vol. 250, pp. 235–242. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Colgate, J.E., Lynch, K.M.: Mechanics and control of swimming: a review. IEEE J. Oceanic Engng. 29, 660–673 (2004)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Chernousko, F.L.: Optimal motion of a two-body system in a resistive medium. Journal of Optimization Theory and Applications 147, 278–297 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach, New York (1961)Google Scholar
  14. 14.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Gordon and Breach, New York (1986)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • F. L. Chernousko
    • 1
  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations